Classifying matchbox manifolds
Geometry & topology, Tome 23 (2019) no. 1, pp. 1-27.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Matchbox manifolds are foliated spaces with totally disconnected transversals. Two matchbox manifolds which are homeomorphic have return equivalent dynamics, so that invariants of return equivalence can be applied to distinguish nonhomeomorphic matchbox manifolds. In this work we study the problem of showing the converse implication: when does return equivalence imply homeomorphism? For the class of weak solenoidal matchbox manifolds, we show that if the base manifolds satisfy a strong form of the Borel conjecture, then return equivalence for the dynamics of their foliations implies the total spaces are homeomorphic. In particular, we show that two equicontinuous Tn–like matchbox manifolds of the same dimension are homeomorphic if and only if their corresponding restricted pseudogroups are return equivalent. At the same time, we show that these results cannot be extended to include the “adic surfaces”, which are a class of weak solenoids fibering over a closed surface of genus 2.

DOI : 10.2140/gt.2019.23.1
Classification : 37B05, 37B45, 54C56, 54F15, 57R30, 58H05, 20E18, 57R65
Keywords: foliated spaces, solenoids, laminations, Cantor pseudogroups

Clark, Alex 1 ; Hurder, Steven 2 ; Lukina, Olga 2

1 Department of Mathematics, University of Leicester, Leicester, United Kingdom
2 Department of Mathematics, University of Illinois at Chicago, Chicago, IL, United States
@article{GT_2019_23_1_a0,
     author = {Clark, Alex and Hurder, Steven and Lukina, Olga},
     title = {Classifying matchbox manifolds},
     journal = {Geometry & topology},
     pages = {1--27},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2019},
     doi = {10.2140/gt.2019.23.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1/}
}
TY  - JOUR
AU  - Clark, Alex
AU  - Hurder, Steven
AU  - Lukina, Olga
TI  - Classifying matchbox manifolds
JO  - Geometry & topology
PY  - 2019
SP  - 1
EP  - 27
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1/
DO  - 10.2140/gt.2019.23.1
ID  - GT_2019_23_1_a0
ER  - 
%0 Journal Article
%A Clark, Alex
%A Hurder, Steven
%A Lukina, Olga
%T Classifying matchbox manifolds
%J Geometry & topology
%D 2019
%P 1-27
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1/
%R 10.2140/gt.2019.23.1
%F GT_2019_23_1_a0
Clark, Alex; Hurder, Steven; Lukina, Olga. Classifying matchbox manifolds. Geometry & topology, Tome 23 (2019) no. 1, pp. 1-27. doi : 10.2140/gt.2019.23.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2019.23.1/

[1] J M Aarts, R J Fokkink, The classification of solenoids, Proc. Amer. Math. Soc. 111 (1991) 1161 | DOI

[2] J M Aarts, L G Oversteegen, Matchbox manifolds, from: "Continua" (editors H Cook, W T Ingram, K T Kuperberg, A Lelek, P Minc), Lecture Notes in Pure and Appl. Math. 170, Dekker (1995) 3

[3] J E Anderson, I F Putnam, Topological invariants for substitution tilings and their associated C∗–algebras, Ergodic Theory Dynam. Systems 18 (1998) 509 | DOI

[4] M Barge, L Sadun, Quotient cohomology for tiling spaces, New York J. Math. 17 (2011) 579

[5] M M Barge, R C Swanson, New techniques for classifying Williams solenoids, Tokyo J. Math. 30 (2007) 139 | DOI

[6] R H Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canad. J. Math. 12 (1960) 209 | DOI

[7] L Block, J Keesling, A characterization of adding machine maps, Topology Appl. 140 (2004) 151 | DOI

[8] C Camacho, A Lins Neto, Geometric theory of foliations, Birkhäuser (1985) | DOI

[9] A Candel, L Conlon, Foliations, I, 23, Amer. Math. Soc. (2000)

[10] A Clark, J Hunton, The homology core of matchbox manifolds and invariant measures, Trans. Amer. Math. Soc. 371 (2019) 1771 | DOI

[11] A Clark, S Hurder, Embedding solenoids in foliations, Topology Appl. 158 (2011) 1249 | DOI

[12] A Clark, S Hurder, Homogeneous matchbox manifolds, Trans. Amer. Math. Soc. 365 (2013) 3151 | DOI

[13] A Clark, S Hurder, O Lukina, Shape of matchbox manifolds, Indag. Math. 25 (2014) 669 | DOI

[14] A Clark, S Hurder, O Lukina, Manifold-like matchbox manifolds, Proc. Amer. Math. Soc. (2018) | DOI

[15] M I Cortez, K Medynets, Orbit equivalence rigidity of equicontinuous systems, J. Lond. Math. Soc. 94 (2016) 545 | DOI

[16] M I Cortez, S Petite, G–odometers and their almost one-to-one extensions, J. Lond. Math. Soc. 78 (2008) 1 | DOI

[17] D V Dantzig, Über topologisch homogene Kontinua, Fund. Math. 15 (1930) 102 | DOI

[18] J F Davis, The work of Tom Farrell and Lowell Jones in topology and geometry, Pure Appl. Math. Q. 8 (2012) 1 | DOI

[19] J Dyer, S Hurder, O Lukina, The discriminant invariant of Cantor group actions, Topology Appl. 208 (2016) 64 | DOI

[20] J Dyer, S Hurder, O Lukina, Growth and homogeneity of matchbox manifolds, Indag. Math. 28 (2017) 145 | DOI

[21] J Dyer, S Hurder, O Lukina, Molino theory for matchbox manifolds, Pacific J. Math. 289 (2017) 91 | DOI

[22] D B A Epstein, K C Millett, D Tischler, Leaves without holonomy, J. London Math. Soc. 16 (1977) 548 | DOI

[23] R Fokkink, L Oversteegen, Homogeneous weak solenoids, Trans. Amer. Math. Soc. 354 (2002) 3743 | DOI

[24] A Forrest, J Hunton, J Kellendonk, Topological invariants for projection method patterns, 758, Amer. Math. Soc. (2002) | DOI

[25] É Ghys, Laminations par surfaces de Riemann, from: "Dynamique et géométrie complexes", Panor. Synthèses 8, Soc. Mat. de France (1999) 49

[26] T Giordano, I F Putnam, C F Skau, Zd–odometers and cohomology, preprint (2017)

[27] A Haefliger, Groupoïdes d’holonomie et classifiants, from: "Transversal structure of foliations", Astérisque 116, Soc. Mat. de France (1984) 70

[28] A Haefliger, Foliations and compactly generated pseudogroups, from: "Foliations: geometry and dynamics" (editors P Walczak, L Conlon, R Langevin, T Tsuboi), World Sci. (2002) 275 | DOI

[29] S Hurder, Classifying foliations, from: "Foliations, geometry, and topology" (editors N C Saldanha, L Conlon, R Langevin, T Tsuboi, P Walczak), Contemp. Math. 498, Amer. Math. Soc. (2009) 1 | DOI

[30] S Hurder, Lectures on foliation dynamics, from: "Foliations: dynamics, geometry and topology" (editors J Á López, M Nicolau), Springer (2014) 87 | DOI

[31] S Hurder, O Lukina, Wild solenoids, Trans. Amer. Math. Soc. 371 (2019) 4493 | DOI

[32] A Julien, L Sadun, Tiling deformations, cohomology, and orbit equivalence of tiling spaces, Ann. Henri Poincaré 19 (2018) 3053 | DOI

[33] W Lück, Aspherical manifolds, Bulletin of the Manifold Atlas 2012 (2012)

[34] M Lyubich, Y Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997) 17 | DOI

[35] M C Mccord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965) 197 | DOI

[36] C C Moore, C L Schochet, Global analysis on foliated spaces, 9, Cambridge Univ. Press (2006) | DOI

[37] J F Plante, Foliations with measure preserving holonomy, Ann. of Math. 102 (1975) 327 | DOI

[38] J T Rogers Jr., J L Tollefson, Homogeneous inverse limit spaces with nonregular covering maps as bonding maps, Proc. Amer. Math. Soc. 29 (1971) 417 | DOI

[39] J T Rogers Jr., J L Tollefson, Maps between weak solenoidal spaces, Colloq. Math. 23 (1971) 245 | DOI

[40] J T Rogers Jr., J L Tollefson, Involutions on solenoidal spaces, Fund. Math. 73 (1971/72) 11 | DOI

[41] L Sadun, Tiling spaces are inverse limits, J. Math. Phys. 44 (2003) 5410 | DOI

[42] L Sadun, Topology of tiling spaces, 46, Amer. Math. Soc. (2008) | DOI

[43] R M Schori, Inverse limits and homogeneity, Trans. Amer. Math. Soc. 124 (1966) 533 | DOI

[44] D Sullivan, Solenoidal manifolds, J. Singul. 9 (2014) 203 | DOI

[45] A Verjovsky, Commentaries on the paper “Solenoidal manifolds”, J. Singul. 9 (2014) 245 | DOI

[46] L Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927) 454 | DOI

Cité par Sources :