Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this second part of a series of papers on the long-time behavior of Ricci flows with surgery, we establish a bound on the evolution of the infimal area of simplicial complexes inside a –manifold under the Ricci flow. This estimate generalizes an area estimate of Hamilton, which we will recall in the first part of the paper.
We remark that in this paper we will mostly be dealing with nonsingular Ricci flows. The existence of surgeries will not play an important role.
Bamler, Richard 1
@article{GT_2018_22_2_a4, author = {Bamler, Richard}, title = {Long-time behavior of 3{\textendash}dimensional {Ricci} flow, {B} : {Evolution} of the minimal area of simplicial complexes under {Ricci} flow}, journal = {Geometry & topology}, pages = {845--892}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, doi = {10.2140/gt.2018.22.845}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.845/} }
TY - JOUR AU - Bamler, Richard TI - Long-time behavior of 3–dimensional Ricci flow, B : Evolution of the minimal area of simplicial complexes under Ricci flow JO - Geometry & topology PY - 2018 SP - 845 EP - 892 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.845/ DO - 10.2140/gt.2018.22.845 ID - GT_2018_22_2_a4 ER -
%0 Journal Article %A Bamler, Richard %T Long-time behavior of 3–dimensional Ricci flow, B : Evolution of the minimal area of simplicial complexes under Ricci flow %J Geometry & topology %D 2018 %P 845-892 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.845/ %R 10.2140/gt.2018.22.845 %F GT_2018_22_2_a4
Bamler, Richard. Long-time behavior of 3–dimensional Ricci flow, B : Evolution of the minimal area of simplicial complexes under Ricci flow. Geometry & topology, Tome 22 (2018) no. 2, pp. 845-892. doi : 10.2140/gt.2018.22.845. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.845/
[1] Long-time behavior of 3–dimensional Ricci flow : introduction, Geom. Topol. 22 (2018)
,[2] Long-time behavior of 3–dimensional Ricci flow, A : Generalizations of Perelman’s long-time estimates, Geom. Topol. 22 (2018)
,[3] Long-time behavior of 3–dimensional Ricci flow, C : 3–manifold topology and combinatorics of simplicial complexes in 3–manifolds, Geom. Topol. 22 (2018)
,[4] Long-time behavior of 3–dimensional Ricci flow, D : Proof of the main results’, Geom. Topol. 22 (2018)
,[5] On the existence and regularity of fundamental domains with least boundary area, J. Differential Geom. 29 (1989) 623 | DOI
,[6] Regularity of minimizing surfaces of prescribed mean curvature, Ann. of Math. 97 (1973) 275 | DOI
,[7] Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999) 695 | DOI
,[8] Singular curves and the Plateau problem, Internat. J. Math. 2 (1991) 1 | DOI
,[9] Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern, Math. Z. 113 (1970) 99 | DOI
,[10] Some remarks on minimal surfaces in Riemannian manifolds, Comm. Pure Appl. Math. 23 (1970) 371 | DOI
, ,[11] The boundary regularity of minimal surfaces, Ann. Scuola Norm. Sup. Pisa 23 (1969) 711
,[12] Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. 112 (1980) 441 | DOI
, ,[13] Ricci flow and the Poincaré conjecture, 3, Amer. Math. Soc. (2007)
, ,[14] The problem of Plateau on a Riemannian manifold, Ann. of Math. 49 (1948) 807 | DOI
,[15] Multiple integrals in the calculus of variations, 130, Springer (1966) | DOI
,[16] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)
,[17] The existence of minimal immersions of 2–spheres, Ann. of Math. 113 (1981) 1 | DOI
, ,Cité par Sources :