Long-time behavior of 3–dimensional Ricci flow, A : Generalizations of Perelman’s long-time estimates
Geometry & topology, Tome 22 (2018) no. 2, pp. 775-844.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the first of a series of papers on the long-time behavior of 3–dimensional Ricci flows with surgery. We first fix a notion of Ricci flows with surgery, which will be used in this and the following three papers. Then we review Perelman’s long-time estimates and generalize them to the case in which the underlying manifold is allowed to have a boundary. Eventually, making use of Perelman’s techniques, we prove new long-time estimates, which hold whenever the metric is sufficiently collapsed.

DOI : 10.2140/gt.2018.22.775
Classification : 53C44, 53C23, 57M50
Keywords: Ricci flow, Ricci flow with surgery, $3$–manifolds, collapsing theory, long-time estimates for Ricci flows

Bamler, Richard 1

1 Department of Mathematics, University of California, Berkeley, CA, United States
@article{GT_2018_22_2_a3,
     author = {Bamler, Richard},
     title = {Long-time behavior of 3{\textendash}dimensional {Ricci} flow, {A} : {Generalizations} of {Perelman{\textquoteright}s} long-time estimates},
     journal = {Geometry & topology},
     pages = {775--844},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     doi = {10.2140/gt.2018.22.775},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.775/}
}
TY  - JOUR
AU  - Bamler, Richard
TI  - Long-time behavior of 3–dimensional Ricci flow, A : Generalizations of Perelman’s long-time estimates
JO  - Geometry & topology
PY  - 2018
SP  - 775
EP  - 844
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.775/
DO  - 10.2140/gt.2018.22.775
ID  - GT_2018_22_2_a3
ER  - 
%0 Journal Article
%A Bamler, Richard
%T Long-time behavior of 3–dimensional Ricci flow, A : Generalizations of Perelman’s long-time estimates
%J Geometry & topology
%D 2018
%P 775-844
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.775/
%R 10.2140/gt.2018.22.775
%F GT_2018_22_2_a3
Bamler, Richard. Long-time behavior of 3–dimensional Ricci flow, A : Generalizations of Perelman’s long-time estimates. Geometry & topology, Tome 22 (2018) no. 2, pp. 775-844. doi : 10.2140/gt.2018.22.775. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.775/

[1] R Bamler, Long-time behavior of 3–dimensional Ricci flow : introduction”, Geom. Topol. 22 (2018)

[2] R Bamler, Long-time behavior of 3–dimensional Ricci flow, D : Proof of the main results, Geom. Topol. 22 (2018)

[3] R Bamler, Ricci flow with surgery, Diploma thesis, Ludwig-Maximilians-Universität Munich (2007)

[4] L Bessières, G Besson, S Maillot, M Boileau, J Porti, Geometrisation of 3–manifolds, 13, Eur. Math. Soc. (2010) | DOI

[5] B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow : techniques and applications, I : Geometric aspects, 135, Amer. Math. Soc. (2007)

[6] R S Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993) 225 | DOI

[7] R S Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995) 545 | DOI

[8] R S Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999) 695 | DOI

[9] B Kleiner, J Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587 | DOI

[10] J Morgan, G Tian, Ricci flow and the Poincaré conjecture, 3, Amer. Math. Soc. (2007)

[11] G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002)

[12] G Perelman, Ricci flow with surgery on three-manifolds, preprint (2003)

Cité par Sources :