Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the first of a series of papers on the long-time behavior of –dimensional Ricci flows with surgery. We first fix a notion of Ricci flows with surgery, which will be used in this and the following three papers. Then we review Perelman’s long-time estimates and generalize them to the case in which the underlying manifold is allowed to have a boundary. Eventually, making use of Perelman’s techniques, we prove new long-time estimates, which hold whenever the metric is sufficiently collapsed.
Bamler, Richard 1
@article{GT_2018_22_2_a3, author = {Bamler, Richard}, title = {Long-time behavior of 3{\textendash}dimensional {Ricci} flow, {A} : {Generalizations} of {Perelman{\textquoteright}s} long-time estimates}, journal = {Geometry & topology}, pages = {775--844}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, doi = {10.2140/gt.2018.22.775}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.775/} }
TY - JOUR AU - Bamler, Richard TI - Long-time behavior of 3–dimensional Ricci flow, A : Generalizations of Perelman’s long-time estimates JO - Geometry & topology PY - 2018 SP - 775 EP - 844 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.775/ DO - 10.2140/gt.2018.22.775 ID - GT_2018_22_2_a3 ER -
%0 Journal Article %A Bamler, Richard %T Long-time behavior of 3–dimensional Ricci flow, A : Generalizations of Perelman’s long-time estimates %J Geometry & topology %D 2018 %P 775-844 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.775/ %R 10.2140/gt.2018.22.775 %F GT_2018_22_2_a3
Bamler, Richard. Long-time behavior of 3–dimensional Ricci flow, A : Generalizations of Perelman’s long-time estimates. Geometry & topology, Tome 22 (2018) no. 2, pp. 775-844. doi : 10.2140/gt.2018.22.775. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.775/
[1] Long-time behavior of 3–dimensional Ricci flow : introduction”, Geom. Topol. 22 (2018)
,[2] Long-time behavior of 3–dimensional Ricci flow, D : Proof of the main results, Geom. Topol. 22 (2018)
,[3] Ricci flow with surgery, Diploma thesis, Ludwig-Maximilians-Universität Munich (2007)
,[4] Geometrisation of 3–manifolds, 13, Eur. Math. Soc. (2010) | DOI
, , , , ,[5] The Ricci flow : techniques and applications, I : Geometric aspects, 135, Amer. Math. Soc. (2007)
, , , , , , , , , ,[6] The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993) 225 | DOI
,[7] A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995) 545 | DOI
,[8] Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999) 695 | DOI
,[9] Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587 | DOI
, ,[10] Ricci flow and the Poincaré conjecture, 3, Amer. Math. Soc. (2007)
, ,[11] The entropy formula for the Ricci flow and its geometric applications, preprint (2002)
,[12] Ricci flow with surgery on three-manifolds, preprint (2003)
,Cité par Sources :