Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a commutative ring spectrum , let be the Loday functor constructed by Brun, Carlson and Dundas. Given a prime , we calculate and for , and use these results to deduce that in the connective Morava K-theory of is nonzero and detected in the homotopy fixed-point spectral sequence by an explicit element, whose class we name the Rognes class.
To facilitate these calculations, we introduce multifold Hopf algebras. Each axis circle in gives rise to a Hopf algebra structure on , and the way these Hopf algebra structures interact is encoded with a multifold Hopf algebra structure. This structure puts several restrictions on the possible algebra structures on and is a vital tool in the calculations above.
Veen, Torleif 1
@article{GT_2018_22_2_a1, author = {Veen, Torleif}, title = {Detecting periodic elements in higher topological {Hochschild} homology}, journal = {Geometry & topology}, pages = {693--756}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, doi = {10.2140/gt.2018.22.693}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.693/} }
TY - JOUR AU - Veen, Torleif TI - Detecting periodic elements in higher topological Hochschild homology JO - Geometry & topology PY - 2018 SP - 693 EP - 756 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.693/ DO - 10.2140/gt.2018.22.693 ID - GT_2018_22_2_a1 ER -
Veen, Torleif. Detecting periodic elements in higher topological Hochschild homology. Geometry & topology, Tome 22 (2018) no. 2, pp. 693-756. doi : 10.2140/gt.2018.22.693. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.693/
[1] Topological Hochschild homology of l and ko, Amer. J. Math. 132 (2010) 297 | DOI
, , ,[2] Hopf algebra structure on topological Hochschild homology, Algebr. Geom. Topol. 5 (2005) 1223 | DOI
, ,[3] Topological Hochschild homology of connective complex K–theory, Amer. J. Math. 127 (2005) 1261 | DOI
,[4] Algebraic K–theory of topological K–theory, Acta Math. 188 (2002) 1 | DOI
, ,[5] The chromatic red-shift in algebraic K–theory, Enseign. Math. 54 (2008) 13
, ,[6] Two-vector bundles and forms of elliptic cohomology, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 18 | DOI
, , ,[7] Conditionally convergent spectral sequences, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 49 | DOI
,[8] Topological Hochschild homology of Fp and Z, preprint (1986)
,[9] The cyclotomic trace and algebraic K–theory of spaces, Invent. Math. 111 (1993) 465 | DOI
, , ,[10] Covering homology, Adv. Math. 225 (2010) 3166 | DOI
, , ,[11] Equivariant structure on smash powers, preprint (2016)
, , ,[12] Differentials in the homological homotopy fixed point spectral sequence, Algebr. Geom. Topol. 5 (2005) 653 | DOI
, ,[13] Higher topological cyclic homology and the Segal conjecture for tori, Adv. Math. 226 (2011) 1823 | DOI
, , ,[14] Algèbres d’Eilenberg–Mac Lane et homotopie, 7, Secrétariat math. (1956)
,[15] The local structure of algebraic K-theory, 18, Springer (2013) | DOI
, , ,[16] Rings, modules, and algebras in stable homotopy theory, 47, Amer. Math. Soc. (1997)
, , , ,[17] On the p–typical curves in Quillen’s K–theory, Acta Math. 177 (1996) 1 | DOI
,[18] On the K–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29 | DOI
, ,[19] On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI
, , ,[20] On the homology spectral sequence for topological Hochschild homology, Trans. Amer. Math. Soc. 348 (1996) 3941 | DOI
,[21] BP operations and Morava’s extraordinary K–theories, Math. Z. 144 (1975) 55 | DOI
, ,[22] Equivariant orthogonal spectra and S–modules, 755, Amer. Math. Soc. (2002) | DOI
, ,[23] Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 | DOI
, , , ,[24] A user’s guide to spectral sequences, 58, Cambridge Univ. Press (2001)
,[25] THH(R)≅R ⊗ S1 for E∞ ring spectra, J. Pure Appl. Algebra 121 (1997) 137 | DOI
, , ,[26] On the topological Hochschild homology of bu, I, Amer. J. Math. 115 (1993) 1 | DOI
, ,[27] The Steenrod algebra and its dual, Ann. of Math. 67 (1958) 150 | DOI
,[28] On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211 | DOI
, ,[29] Algebraic K-theory of strict ring spectra, preprint (2014)
,[30] Symmetric spectra and topological Hochschild homology, -Theory 19 (2000) 155 | DOI
,[31] Equivariant structures on smash powers of commutative ring spectra, PhD thesis, University of Bergen (2011)
,Cité par Sources :