Detecting periodic elements in higher topological Hochschild homology
Geometry & topology, Tome 22 (2018) no. 2, pp. 693-756.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a commutative ring spectrum R, let ΛXR be the Loday functor constructed by Brun, Carlson and Dundas. Given a prime p 5, we calculate π(ΛSnHFp) and π(ΛTnHFp) for n p, and use these results to deduce that vn1 in the (n1)st connective Morava K-theory of (ΛTnHFp)hTn is nonzero and detected in the homotopy fixed-point spectral sequence by an explicit element, whose class we name the Rognes class.

To facilitate these calculations, we introduce multifold Hopf algebras. Each axis circle in Tn gives rise to a Hopf algebra structure on π(ΛTnHFp), and the way these Hopf algebra structures interact is encoded with a multifold Hopf algebra structure. This structure puts several restrictions on the possible algebra structures on π(ΛTnHFp) and is a vital tool in the calculations above.

DOI : 10.2140/gt.2018.22.693
Classification : 55P42, 55P91, 55T99
Keywords: THH, K-theory, spectral sequences, Morava K-theory

Veen, Torleif 1

1 Department of Mathematics, University of Bergen, Bergen, Norway
@article{GT_2018_22_2_a1,
     author = {Veen, Torleif},
     title = {Detecting periodic elements in higher topological {Hochschild} homology},
     journal = {Geometry & topology},
     pages = {693--756},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2018},
     doi = {10.2140/gt.2018.22.693},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.693/}
}
TY  - JOUR
AU  - Veen, Torleif
TI  - Detecting periodic elements in higher topological Hochschild homology
JO  - Geometry & topology
PY  - 2018
SP  - 693
EP  - 756
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.693/
DO  - 10.2140/gt.2018.22.693
ID  - GT_2018_22_2_a1
ER  - 
%0 Journal Article
%A Veen, Torleif
%T Detecting periodic elements in higher topological Hochschild homology
%J Geometry & topology
%D 2018
%P 693-756
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.693/
%R 10.2140/gt.2018.22.693
%F GT_2018_22_2_a1
Veen, Torleif. Detecting periodic elements in higher topological Hochschild homology. Geometry & topology, Tome 22 (2018) no. 2, pp. 693-756. doi : 10.2140/gt.2018.22.693. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.693/

[1] V Angeltveit, M A Hill, T Lawson, Topological Hochschild homology of l and ko, Amer. J. Math. 132 (2010) 297 | DOI

[2] V Angeltveit, J Rognes, Hopf algebra structure on topological Hochschild homology, Algebr. Geom. Topol. 5 (2005) 1223 | DOI

[3] C Ausoni, Topological Hochschild homology of connective complex K–theory, Amer. J. Math. 127 (2005) 1261 | DOI

[4] C Ausoni, J Rognes, Algebraic K–theory of topological K–theory, Acta Math. 188 (2002) 1 | DOI

[5] C Ausoni, J Rognes, The chromatic red-shift in algebraic K–theory, Enseign. Math. 54 (2008) 13

[6] N A Baas, B I Dundas, J Rognes, Two-vector bundles and forms of elliptic cohomology, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 18 | DOI

[7] J M Boardman, Conditionally convergent spectral sequences, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 49 | DOI

[8] M Bökstedt, Topological Hochschild homology of Fp and Z, preprint (1986)

[9] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic K–theory of spaces, Invent. Math. 111 (1993) 465 | DOI

[10] M Brun, G Carlsson, B I Dundas, Covering homology, Adv. Math. 225 (2010) 3166 | DOI

[11] M Brun, B I Dundas, M Stolz, Equivariant structure on smash powers, preprint (2016)

[12] R R Bruner, J Rognes, Differentials in the homological homotopy fixed point spectral sequence, Algebr. Geom. Topol. 5 (2005) 653 | DOI

[13] G Carlsson, C L Douglas, B I Dundas, Higher topological cyclic homology and the Segal conjecture for tori, Adv. Math. 226 (2011) 1823 | DOI

[14] H Cartan, Algèbres d’Eilenberg–Mac Lane et homotopie, 7, Secrétariat math. (1956)

[15] B I Dundas, T G Goodwillie, R Mccarthy, The local structure of algebraic K-theory, 18, Springer (2013) | DOI

[16] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, 47, Amer. Math. Soc. (1997)

[17] L Hesselholt, On the p–typical curves in Quillen’s K–theory, Acta Math. 177 (1996) 1 | DOI

[18] L Hesselholt, I Madsen, On the K–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29 | DOI

[19] M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI

[20] T J Hunter, On the homology spectral sequence for topological Hochschild homology, Trans. Amer. Math. Soc. 348 (1996) 3941 | DOI

[21] D C Johnson, W S Wilson, BP operations and Morava’s extraordinary K–theories, Math. Z. 144 (1975) 55 | DOI

[22] M A Mandell, J P May, Equivariant orthogonal spectra and S–modules, 755, Amer. Math. Soc. (2002) | DOI

[23] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 | DOI

[24] J Mccleary, A user’s guide to spectral sequences, 58, Cambridge Univ. Press (2001)

[25] J Mcclure, R Schwänzl, R Vogt, THH(R)≅R ⊗ S1 for E∞ ring spectra, J. Pure Appl. Algebra 121 (1997) 137 | DOI

[26] J E Mcclure, R E Staffeldt, On the topological Hochschild homology of bu, I, Amer. J. Math. 115 (1993) 1 | DOI

[27] J Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958) 150 | DOI

[28] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211 | DOI

[29] J Rognes, Algebraic K-theory of strict ring spectra, preprint (2014)

[30] B Shipley, Symmetric spectra and topological Hochschild homology, -Theory 19 (2000) 155 | DOI

[31] M Stolz, Equivariant structures on smash powers of commutative ring spectra, PhD thesis, University of Bergen (2011)

Cité par Sources :