Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We conjecture an expression for the dimensions of the Khovanov–Rozansky HOMFLY homology groups of the link of a plane curve singularity in terms of the weight polynomials of Hilbert schemes of points scheme-theoretically supported on the singularity. The conjecture specializes to our previous conjecture (2012) relating the HOMFLY polynomial to the Euler numbers of the same spaces upon setting . By generalizing results of Piontkowski on the structure of compactified Jacobians to the case of Hilbert schemes of points, we give an explicit prediction of the HOMFLY homology of a torus knot as a certain sum over diagrams.
The Hilbert scheme series corresponding to the summand of the HOMFLY homology with minimal “” grading can be recovered from the perverse filtration on the cohomology of the compactified Jacobian. In the case of torus knots, this space furnishes the unique finite-dimensional simple representation of the rational spherical Cherednik algebra with central character . Up to a conjectural identification of the perverse filtration with a previously introduced filtration, the work of Haiman and Gordon and Stafford gives formulas for the Hilbert scheme series when .
Oblomkov, Alexei 1 ; Rasmussen, Jacob 2 ; Shende, Vivek 3
@article{GT_2018_22_2_a0, author = {Oblomkov, Alexei and Rasmussen, Jacob and Shende, Vivek}, title = {The {Hilbert} scheme of a plane curve singularity and the {HOMFLY} homology of its link}, journal = {Geometry & topology}, pages = {645--691}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2018}, doi = {10.2140/gt.2018.22.645}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.645/} }
TY - JOUR AU - Oblomkov, Alexei AU - Rasmussen, Jacob AU - Shende, Vivek TI - The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link JO - Geometry & topology PY - 2018 SP - 645 EP - 691 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.645/ DO - 10.2140/gt.2018.22.645 ID - GT_2018_22_2_a0 ER -
%0 Journal Article %A Oblomkov, Alexei %A Rasmussen, Jacob %A Shende, Vivek %T The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link %J Geometry & topology %D 2018 %P 645-691 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.645/ %R 10.2140/gt.2018.22.645 %F GT_2018_22_2_a0
Oblomkov, Alexei; Rasmussen, Jacob; Shende, Vivek. The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link. Geometry & topology, Tome 22 (2018) no. 2, pp. 645-691. doi : 10.2140/gt.2018.22.645. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.645/
[1] Categorified Young symmetrizers and stable homology of torus links, II, Selecta Math. 23 (2017) 1739 | DOI
, ,[2] Knot homology from refined Chern–Simons theory, preprint (2011)
, ,[3] Irreducibility of the compactified Jacobian, from: "Real and complex singularities" (editor P Holm), Sijthoff and Noordhoff (1977) 1
, , ,[4] Compactifying the Picard scheme, Adv. in Math. 35 (1980) 50 | DOI
, ,[5] Singularities of differentiable maps, II, 83, Birkhäuser (1988) | DOI
, , ,[6] Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5
, , ,[7] Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003) 279 | DOI
, , ,[8] Finite-dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 2003 (2003) 1053 | DOI
, , ,[9] Morita equivalence of Cherednik algebras, J. Reine Angew. Math. 568 (2004) 81 | DOI
, , ,[10] Parabolic induction and restriction functors for rational Cherednik algebras, Selecta Math. 14 (2009) 397 | DOI
, ,[11] Cohen–Macaulay rings, 39, Cambridge Univ. Press (1993)
, ,[12] Universal KZB equations : the elliptic case, from: "Algebra, arithmetic, and geometry : in honor of Yu I Manin, I" (editors Y Tschinkel, Y Zarhin), Progr. Math. 269, Birkhäuser (2009) 165 | DOI
, , ,[13] A proof of the shuffle conjecture, preprint (2015)
, ,[14] Jones polynomials of torus knots via DAHA, Int. Math. Res. Not. 2013 (2013) 5366 | DOI
,[15] Newton polyhedra and an algorithm for computing Hodge–Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 925
, ,[16] Théorie de Hodge, I, from: "Actes du Congrès International des Mathématiciens" (editors M Berger, J Dieudonné, J Leray, J L Lions, P Malliavin, J P Serre), Gauthier-Villars (1971) 425
,[17] Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5 | DOI
,[18] Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. 44 (1974) 5 | DOI
,[19] Poids dans la cohomologie des variétés algébriques, from: "Proceedings of the International Congress of Mathematicians" (editor R D James), Canad. Math. Congress (1975) 79
,[20] The superpolynomial for knot homologies, Experiment. Math. 15 (2006) 129
, , ,[21] Superpolynomials for torus knots from evolution induced by cut-and-join operators, J. High Energy Phys. (2013) | DOI
, , , , ,[22] Algebraic varieties which are a disjoint union of subvarieties, from: "Geometry and topology" (editors C McCrory, T Shifrin), Lecture Notes in Pure and Appl. Math. 105, Dekker (1987) 99
,[23] A Schröder generalization of Haglund’s statistic on Catalan paths, Electron. J. Combin. 10 (2003)
, , , ,[24] On the computation of torus link homology, preprint (2016)
, ,[25] Euler number of the compactified Jacobian and multiplicity of rational curves, J. Algebraic Geom. 8 (1999) 115
, , ,[26] A remarkable q,t–Catalan sequence and q–Lagrange inversion, J. Algebraic Combin. 5 (1996) 191 | DOI
, ,[27] On the category O for rational Cherednik algebras, Invent. Math. 154 (2003) 617 | DOI
, , , ,[28] Rational Cherednik algebras and Hilbert schemes, Adv. Math. 198 (2005) 222 | DOI
, ,[29] Rational Cherednik algebras and Hilbert schemes, II : Representations and sheaves, Duke Math. J. 132 (2006) 73 | DOI
, ,[30] q,t–Catalan numbers and knot homology, from: "Zeta functions in algebra and geometry" (editors A Campillo, G Cardona, A Melle-Hernández, W Veys), Contemp. Math. 566, Amer. Math. Soc. (2012) 213 | DOI
,[31] Compactified Jacobians and q,t–Catalan numbers, I, J. Combin. Theory Ser. A 120 (2013) 49 | DOI
, ,[32] Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. 104 (2015) 403 | DOI
, ,[33] Flag Hilbert schemes, colored projectors and Khovanov–Rozansky homology, preprint (2016)
, , ,[34] Torus knots and the rational DAHA, Duke Math. J. 163 (2014) 2709 | DOI
, , , ,[35] Conjectured statistics for the q,t–Catalan numbers, Adv. Math. 175 (2003) 319 | DOI
,[36] A proof of the q,t–Schröder conjecture, Int. Math. Res. Not. 2004 (2004) 525 | DOI
,[37] The q,t–Catalan numbers and the space of diagonal harmonics, 41, Amer. Math. Soc. (2008)
,[38] Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994) 17 | DOI
,[39] Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002) 371 | DOI
,[40] Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986) 375 | DOI
,[41] Categorified Young symmetrizers and stable homology of torus links, preprint (2015)
,[42] Khovanov–Rozansky homology and higher Catalan sequences, preprint (2017)
,[43] Meridian twisting of closed braids and the Homfly polynomial, Math. Proc. Cambridge Philos. Soc. 146 (2009) 649 | DOI
,[44] Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869 | DOI
,[45] Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387 | DOI
, ,[46] Conjectured statistics for the higher q,t–Catalan sequences, Electron. J. Combin. 12 (2005)
,[47] A continuous family of partition statistics equidistributed with length, J. Combin. Theory Ser. A 116 (2009) 379 | DOI
, ,[48] Symmetric products of an algebraic curve, Topology 1 (1962) 319 | DOI
,[49] Macdonald formula for curves with planar singularities, J. Reine Angew. Math. 694 (2014) 27 | DOI
, ,[50] Toric braids and (m,n)–parking functions, preprint (2016)
,[51] A support theorem for Hilbert schemes of planar curves, J. Eur. Math. Soc. 15 (2013) 2353 | DOI
, ,[52] Singular points of complex hypersurfaces, 61, Princeton Univ. Press (1968)
,[53] Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010) 1 | DOI
,[54] Knot homology and sheaves on the Hilbert scheme of points on the plane, preprint (2016)
, ,[55] Affine braid group, JM elements and knot homology, preprint (2017)
, ,[56] The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link, Duke Math. J. 161 (2012) 1277 | DOI
, ,[57] Geometric representations of graded and rational Cherednik algebras, Adv. Math. 292 (2016) 601 | DOI
, ,[58] Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010) 267 | DOI
, ,[59] Topology of the compactified Jacobians of singular curves, Math. Z. 255 (2007) 195 | DOI
,[60] Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 | DOI
,[61] Homological thickness and stability of torus knots, Algebr. Geom. Topol. 7 (2007) 261 | DOI
,[62] Finite-dimensional representations of DAHA and affine Springer fibers : the spherical case, Duke Math. J. 147 (2009) 439 | DOI
, ,[63] Global Springer theory, Adv. Math. 228 (2011) 266 | DOI
,[64] Le problème des modules pour les branches planes, Hermann (1986)
,Cité par Sources :