Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the intrinsic structure of parametric minimal discs in metric spaces admitting a quadratic isoperimetric inequality. We associate to each minimal disc a compact, geodesic metric space whose geometric, topological, and analytic properties are controlled by the isoperimetric inequality. Its geometry can be used to control the shapes of all curves and therefore the geometry and topology of the original metric space. The class of spaces arising in this way as intrinsic minimal discs is a natural generalization of the class of Ahlfors regular discs, well-studied in analysis on metric spaces.
Lytchak, Alexander 1 ; Wenger, Stefan 2
@article{GT_2018_22_1_a11, author = {Lytchak, Alexander and Wenger, Stefan}, title = {Intrinsic structure of minimal discs in metric spaces}, journal = {Geometry & topology}, pages = {591--644}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, doi = {10.2140/gt.2018.22.591}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.591/} }
TY - JOUR AU - Lytchak, Alexander AU - Wenger, Stefan TI - Intrinsic structure of minimal discs in metric spaces JO - Geometry & topology PY - 2018 SP - 591 EP - 644 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.591/ DO - 10.2140/gt.2018.22.591 ID - GT_2018_22_1_a11 ER -
Lytchak, Alexander; Wenger, Stefan. Intrinsic structure of minimal discs in metric spaces. Geometry & topology, Tome 22 (2018) no. 1, pp. 591-644. doi : 10.2140/gt.2018.22.591. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.591/
[1] Volumes on normed and Finsler spaces, from: "A sampler of Riemann–Finsler geometry" (editors D Bao, R L Bryant, S S Chern, Z Shen), Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press (2004) 1 | DOI
, ,[2] Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000) 527 | DOI
, ,[3] Centroid bodies and the convexity of area functionals, J. Differential Geom. 98 (2014) 357 | DOI
,[4] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002) 127 | DOI
, ,[5] A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI
, , ,[6] On the definitions of Sobolev and BV spaces into singular spaces and the trace problem, Commun. Contemp. Math. 9 (2007) 473 | DOI
,[7] Minimal surfaces, 339, Springer (2010) | DOI
, , ,[8] Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931) 263 | DOI
,[9] The topology of manifolds and cell-like maps, from: "Proceedings of the International Congress of Mathematicians" (editor O Lehto), Acad. Sci. Fennica (1980) 111
,[10] Geometric measure theory, 153, Springer (1969)
,[11] Spaces of finite length, Proc. London Math. Soc. 64 (1992) 449 | DOI
,[12] Encyclopedia of general topology, Elsevier (2003)
, , , editors,[13] Sobolev spaces on metric measure spaces: an approach based on upper gradients, 27, Cambridge Univ. Press (2015) | DOI
, , , ,[14] Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65 | DOI
,[15] Volumes and areas of Lipschitz metrics, Algebra i Analiz 20 (2008) 74
,[16] Filling minimality of Finslerian 2–discs, Tr. Mat. Inst. Steklova 273 (2011) 192
,[17] Area and coarea formulas for mappings of the Sobolev classes with values in a metric space, Sibirsk. Mat. Zh. 48 (2007) 778
,[18] Rectifiable metric spaces : local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994) 113 | DOI
,[19] Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI
, ,[20] Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal. 5 (2013) 297 | DOI
,[21] A first course in Sobolev spaces, 105, Amer. Math. Soc. (2009) | DOI
,[22] Isoperimetric characterization of upper curvature bounds, preprint (2016)
, ,[23] Regularity of harmonic discs in spaces with quadratic isoperimetric inequality, Calc. Var. Partial Differential Equations 55 (2016) | DOI
, ,[24] Area minimizing discs in metric spaces, Arch. Ration. Mech. Anal. 223 (2017) 1123 | DOI
, ,[25] Canonical parametrizations of metric discs, preprint (2017)
, ,[26] Energy and area minimizers in metric spaces, Adv. Calc. Var. 10 (2017) 407 | DOI
, ,[27] Dehn functions and Hölder extensions in asymptotic cones, preprint (2016)
, , ,[28] Isoperimetric regions in cones, Trans. Amer. Math. Soc. 354 (2002) 2327 | DOI
, ,[29] The problem of Plateau on a Riemannian manifold, Ann. of Math. 49 (1948) 807 | DOI
,[30] On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality, J. Differential Geom. 44 (1996) 789 | DOI
,[31] Metric minimizing surfaces, Electron. Res. Announc. Amer. Math. Soc. 5 (1999) 47 | DOI
,[32] On intrinsic isometries in Euclidean space, Algebra i Analiz 22 (2010) 140
,[33] Metric minimizing surfaces revisited, preprint (2017)
, ,[34] Boundary behaviour of conformal maps, 299, Springer (1992) | DOI
,[35] On Plateau’s problem, Ann. of Math. 31 (1930) 457 | DOI
,[36] Uniformization of two-dimensional metric surfaces, Invent. Math. 207 (2017) 1301 | DOI
,[37] Sobolev-type classes of functions with values in a metric space, II, Sibirsk. Mat. Zh. 45 (2004) 855
,[38] The planar Schönflies theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980) 49 | DOI
,[39] Topology of manifolds, 32, Amer. Math. Soc. (1949)
,[40] Quasisymmetric parametrizations of two-dimensional metric planes, Proc. Lond. Math. Soc. 97 (2008) 783 | DOI
,Cité par Sources :