Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper we prove that, given an open Riemann surface and an integer , the set of complete conformal minimal immersions with forms a dense subset in the space of all conformal minimal immersions endowed with the compact-open topology. Moreover, we show that every domain in contains complete minimal surfaces which are dense on it and have arbitrary orientable topology (possibly infinite); we also provide such surfaces whose complex structure is any given bordered Riemann surface.
Our method of proof can be adapted to give analogous results for nonorientable minimal surfaces in , complex curves in , holomorphic null curves in , and holomorphic Legendrian curves in .
Alarcón, Antonio 1 ; Castro-Infantes, Ildefonso 1
@article{GT_2018_22_1_a10, author = {Alarc\'on, Antonio and Castro-Infantes, Ildefonso}, title = {Complete minimal surfaces densely lying in arbitrary domains of {\ensuremath{\mathbb{R}}n}}, journal = {Geometry & topology}, pages = {571--590}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, doi = {10.2140/gt.2018.22.571}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.571/} }
TY - JOUR AU - Alarcón, Antonio AU - Castro-Infantes, Ildefonso TI - Complete minimal surfaces densely lying in arbitrary domains of ℝn JO - Geometry & topology PY - 2018 SP - 571 EP - 590 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.571/ DO - 10.2140/gt.2018.22.571 ID - GT_2018_22_1_a10 ER -
%0 Journal Article %A Alarcón, Antonio %A Castro-Infantes, Ildefonso %T Complete minimal surfaces densely lying in arbitrary domains of ℝn %J Geometry & topology %D 2018 %P 571-590 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.571/ %R 10.2140/gt.2018.22.571 %F GT_2018_22_1_a10
Alarcón, Antonio; Castro-Infantes, Ildefonso. Complete minimal surfaces densely lying in arbitrary domains of ℝn. Geometry & topology, Tome 22 (2018) no. 1, pp. 571-590. doi : 10.2140/gt.2018.22.571. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.571/
[1] Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves, Proc. Lond. Math. Soc. 111 (2015) 851 | DOI
, , , ,[2] Complete minimal surfaces and harmonic functions, Comment. Math. Helv. 87 (2012) 891 | DOI
, , ,[3] Every bordered Riemann surface is a complete proper curve in a ball, Math. Ann. 357 (2013) 1049 | DOI
, ,[4] Null curves and directed immersions of open Riemann surfaces, Invent. Math. 196 (2014) 733 | DOI
, ,[5] The Calabi–Yau problem, null curves, and Bryant surfaces, Math. Ann. 363 (2015) 913 | DOI
, ,[6] Null holomorphic curves in C3 and applications to the conformal Calabi–Yau problem, from: "Complex geometry and dynamics" (editors J E Fornæss, M Irgens, E F Wold), Abel Symp. 10, Springer (2015) 101 | DOI
, ,[7] Embedded minimal surfaces in Rn, Math. Z. 283 (2016) 1 | DOI
, , ,[8] New complex analytic methods in the study of non-orientable minimal surfaces in Rn, preprint (2016)
, , ,[9] Holomorphic Legendrian curves, Compos. Math. 153 (2017) 1945 | DOI
, , ,[10] Minimal surfaces in R3 properly projecting into R2, J. Differential Geom. 90 (2012) 351 | DOI
, ,[11] Proper holomorphic embeddings of Riemann surfaces with arbitrary topology into C2, J. Geom. Anal. 23 (2013) 1794 | DOI
, ,[12] Approximation theory for nonorientable minimal surfaces and applications, Geom. Topol. 19 (2015) 1015 | DOI
, ,[13] A wild minimal plane in R3, Proc. Amer. Math. Soc. 128 (2000) 1451 | DOI
,[14] Subalgebras of functions on a Riemann surface, Pacific J. Math. 8 (1958) 29 | DOI
,[15] Holomorphic curves in complex spaces, Duke Math. J. 139 (2007) 203 | DOI
, ,[16] The Poletsky–Rosay theorem on singular complex spaces, Indiana Univ. Math. J. 61 (2012) 1407 | DOI
, ,[17] Riemann surfaces, 71, Springer (1992) | DOI
, ,[18] Stein manifolds and holomorphic mappings: the homotopy principle in complex analysis, 56, Springer (2011) | DOI
,[19] Oka manifolds : from Oka to Stein and back, Ann. Fac. Sci. Toulouse Math. 22 (2013) 747 | DOI
,[20] Surjective holomorphic maps onto Oka manifolds, from: "Complex and symplectic geometry" (editors D Angella, C Medori, A Tomassini), Springer INdAM Ser., Springer (2017) | DOI
,[21] Survey of Oka theory, New York J. Math. 17A (2011) 11
, ,[22] Holomorphic discs with dense images, Math. Res. Lett. 12 (2005) 265 | DOI
, ,[23] Bordered Riemann surfaces in C2, J. Math. Pures Appl. 91 (2009) 100 | DOI
, ,[24] Dense solutions to the Cauchy problem for minimal surfaces, Bull. Braz. Math. Soc. 35 (2004) 387 | DOI
, ,[25] Analytic functions of several complex variables, Prentice-Hall (1965)
, ,[26] An introduction to complex analysis in several variables, 7, North-Holland (1990)
,[27] Flexibility properties in complex analysis and affine algebraic geometry, from: "Automorphisms in birational and affine geometry" (editors I Cheltsov, C Ciliberto, H Flenner, J McKernan, Y G Prokhorov, M Zaidenberg), Springer Proc. Math. Stat. 79, Springer (2014) 387 | DOI
,[28] What is ... an Oka manifold ?, Notices Amer. Math. Soc. 57 (2010) 50
,[29] Beiträge zur Theorie der Minimalflächen, Math. Ann. 14 (1878) 331 | DOI
,[30] Exotic minimal surfaces, J. Geom. Anal. 24 (2014) 988 | DOI
,[31] On the representation of functions by series of polynomials on closed sets, Doklady Akad. Nauk SSSR 78 (1951) 405
,[32] A survey of minimal surfaces, Dover Publications (1986)
,[33] Zur Theorie der Analytischen Functionen, Acta Math. 6 (1885) 245 | DOI
,[34] Non-degenerate maps and sets, Math. Z. 249 (2005) 783 | DOI
,Cité par Sources :