Complete minimal surfaces densely lying in arbitrary domains of ℝn
Geometry & topology, Tome 22 (2018) no. 1, pp. 571-590.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper we prove that, given an open Riemann surface M and an integer n 3, the set of complete conformal minimal immersions M n with X(M)̄ = n forms a dense subset in the space of all conformal minimal immersions M n endowed with the compact-open topology. Moreover, we show that every domain in n contains complete minimal surfaces which are dense on it and have arbitrary orientable topology (possibly infinite); we also provide such surfaces whose complex structure is any given bordered Riemann surface.

Our method of proof can be adapted to give analogous results for nonorientable minimal surfaces in n(n 3), complex curves in n(n 2), holomorphic null curves in n(n 3), and holomorphic Legendrian curves in 2n+1(n ).

DOI : 10.2140/gt.2018.22.571
Classification : 49Q05, 32H02
Keywords: complete minimal surface, Riemann surface, holomorphic curve

Alarcón, Antonio 1 ; Castro-Infantes, Ildefonso 1

1 Departamento de Geometría y Topología, Universidad de Granada, Granada, Spain
@article{GT_2018_22_1_a10,
     author = {Alarc\'on, Antonio and Castro-Infantes, Ildefonso},
     title = {Complete minimal surfaces densely lying in arbitrary domains of {\ensuremath{\mathbb{R}}n}},
     journal = {Geometry & topology},
     pages = {571--590},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.571},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.571/}
}
TY  - JOUR
AU  - Alarcón, Antonio
AU  - Castro-Infantes, Ildefonso
TI  - Complete minimal surfaces densely lying in arbitrary domains of ℝn
JO  - Geometry & topology
PY  - 2018
SP  - 571
EP  - 590
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.571/
DO  - 10.2140/gt.2018.22.571
ID  - GT_2018_22_1_a10
ER  - 
%0 Journal Article
%A Alarcón, Antonio
%A Castro-Infantes, Ildefonso
%T Complete minimal surfaces densely lying in arbitrary domains of ℝn
%J Geometry & topology
%D 2018
%P 571-590
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.571/
%R 10.2140/gt.2018.22.571
%F GT_2018_22_1_a10
Alarcón, Antonio; Castro-Infantes, Ildefonso. Complete minimal surfaces densely lying in arbitrary domains of ℝn. Geometry & topology, Tome 22 (2018) no. 1, pp. 571-590. doi : 10.2140/gt.2018.22.571. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.571/

[1] A Alarcón, B Drinovec Drnovšek, F Forstnerič, F J López, Every bordered Riemann surface is a complete conformal minimal surface bounded by Jordan curves, Proc. Lond. Math. Soc. 111 (2015) 851 | DOI

[2] A Alarcón, I Fernández, F J López, Complete minimal surfaces and harmonic functions, Comment. Math. Helv. 87 (2012) 891 | DOI

[3] A Alarcón, F Forstnerič, Every bordered Riemann surface is a complete proper curve in a ball, Math. Ann. 357 (2013) 1049 | DOI

[4] A Alarcón, F Forstnerič, Null curves and directed immersions of open Riemann surfaces, Invent. Math. 196 (2014) 733 | DOI

[5] A Alarcón, F Forstnerič, The Calabi–Yau problem, null curves, and Bryant surfaces, Math. Ann. 363 (2015) 913 | DOI

[6] A Alarcón, F Forstnerič, Null holomorphic curves in C3 and applications to the conformal Calabi–Yau problem, from: "Complex geometry and dynamics" (editors J E Fornæss, M Irgens, E F Wold), Abel Symp. 10, Springer (2015) 101 | DOI

[7] A Alarcón, F Forstnerič, F J López, Embedded minimal surfaces in Rn, Math. Z. 283 (2016) 1 | DOI

[8] A Alarcón, F Forstnerič, F J López, New complex analytic methods in the study of non-orientable minimal surfaces in Rn, preprint (2016)

[9] A Alarcón, F Forstnerič, F J López, Holomorphic Legendrian curves, Compos. Math. 153 (2017) 1945 | DOI

[10] A Alarcón, F J López, Minimal surfaces in R3 properly projecting into R2, J. Differential Geom. 90 (2012) 351 | DOI

[11] A Alarcón, F J López, Proper holomorphic embeddings of Riemann surfaces with arbitrary topology into C2, J. Geom. Anal. 23 (2013) 1794 | DOI

[12] A Alarcón, F J López, Approximation theory for nonorientable minimal surfaces and applications, Geom. Topol. 19 (2015) 1015 | DOI

[13] P Andrade, A wild minimal plane in R3, Proc. Amer. Math. Soc. 128 (2000) 1451 | DOI

[14] E Bishop, Subalgebras of functions on a Riemann surface, Pacific J. Math. 8 (1958) 29 | DOI

[15] B Drinovec Drnovšek, F Forstnerič, Holomorphic curves in complex spaces, Duke Math. J. 139 (2007) 203 | DOI

[16] B Drinovec Drnovšek, F Forstnerič, The Poletsky–Rosay theorem on singular complex spaces, Indiana Univ. Math. J. 61 (2012) 1407 | DOI

[17] H M Farkas, I Kra, Riemann surfaces, 71, Springer (1992) | DOI

[18] F Forstnerič, Stein manifolds and holomorphic mappings: the homotopy principle in complex analysis, 56, Springer (2011) | DOI

[19] F Forstnerič, Oka manifolds : from Oka to Stein and back, Ann. Fac. Sci. Toulouse Math. 22 (2013) 747 | DOI

[20] F Forstnerič, Surjective holomorphic maps onto Oka manifolds, from: "Complex and symplectic geometry" (editors D Angella, C Medori, A Tomassini), Springer INdAM Ser., Springer (2017) | DOI

[21] F Forstnerič, F Lárusson, Survey of Oka theory, New York J. Math. 17A (2011) 11

[22] F Forstnerič, J Winkelmann, Holomorphic discs with dense images, Math. Res. Lett. 12 (2005) 265 | DOI

[23] F Forstnerič, E F Wold, Bordered Riemann surfaces in C2, J. Math. Pures Appl. 91 (2009) 100 | DOI

[24] J A Gálvez, P Mira, Dense solutions to the Cauchy problem for minimal surfaces, Bull. Braz. Math. Soc. 35 (2004) 387 | DOI

[25] R C Gunning, H Rossi, Analytic functions of several complex variables, Prentice-Hall (1965)

[26] L Hörmander, An introduction to complex analysis in several variables, 7, North-Holland (1990)

[27] F Kutzschebauch, Flexibility properties in complex analysis and affine algebraic geometry, from: "Automorphisms in birational and affine geometry" (editors I Cheltsov, C Ciliberto, H Flenner, J McKernan, Y G Prokhorov, M Zaidenberg), Springer Proc. Math. Stat. 79, Springer (2014) 387 | DOI

[28] F Lárusson, What is ... an Oka manifold ?, Notices Amer. Math. Soc. 57 (2010) 50

[29] S Lie, Beiträge zur Theorie der Minimalflächen, Math. Ann. 14 (1878) 331 | DOI

[30] F J López, Exotic minimal surfaces, J. Geom. Anal. 24 (2014) 988 | DOI

[31] S N Mergelyan, On the representation of functions by series of polynomials on closed sets, Doklady Akad. Nauk SSSR 78 (1951) 405

[32] R Osserman, A survey of minimal surfaces, Dover Publications (1986)

[33] C Runge, Zur Theorie der Analytischen Functionen, Acta Math. 6 (1885) 245 | DOI

[34] J Winkelmann, Non-degenerate maps and sets, Math. Z. 249 (2005) 783 | DOI

Cité par Sources :