Gauge-reversing maps on cones, and Hilbert and Thompson isometries
Geometry & topology, Tome 22 (2018) no. 1, pp. 55-104.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a cone admits a gauge-reversing map if and only if it is a symmetric cone. We use this to prove that every isometry of a Hilbert geometry is a projectivity unless the Hilbert geometry is the projective space of a non-Lorentzian symmetric cone, in which case the projectivity group is of index two in the isometry group. We also determine the isometry group of the Thompson geometry on a cone.

DOI : 10.2140/gt.2018.22.55
Classification : 52A99
Keywords: Hilbert metric, Thompson metric, horofunction boundary, isometry group, symmetric cones, antitone map

Walsh, Cormac 1

1 INRIA and CMAP, École Polytechnique, Palaiseau, France
@article{GT_2018_22_1_a1,
     author = {Walsh, Cormac},
     title = {Gauge-reversing maps on cones, and {Hilbert} and {Thompson} isometries},
     journal = {Geometry & topology},
     pages = {55--104},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.55},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.55/}
}
TY  - JOUR
AU  - Walsh, Cormac
TI  - Gauge-reversing maps on cones, and Hilbert and Thompson isometries
JO  - Geometry & topology
PY  - 2018
SP  - 55
EP  - 104
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.55/
DO  - 10.2140/gt.2018.22.55
ID  - GT_2018_22_1_a1
ER  - 
%0 Journal Article
%A Walsh, Cormac
%T Gauge-reversing maps on cones, and Hilbert and Thompson isometries
%J Geometry & topology
%D 2018
%P 55-104
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.55/
%R 10.2140/gt.2018.22.55
%F GT_2018_22_1_a1
Walsh, Cormac. Gauge-reversing maps on cones, and Hilbert and Thompson isometries. Geometry & topology, Tome 22 (2018) no. 1, pp. 55-104. doi : 10.2140/gt.2018.22.55. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.55/

[1] M Akian, S Gaubert, C Walsh, The max-plus Martin boundary, Doc. Math. 14 (2009) 195

[2] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, 61, Birkhäuser (1985) | DOI

[3] H Barnum, Proof that domains of positivity of symmetric nondegenerate bilinear forms are self-dual cones?, MathOverflow post (2010)

[4] A Bosché, Symmetric cones, the Hilbert and Thompson metrics, preprint (2012)

[5] H Busemann, The geometry of geodesics, Academic Press (1955)

[6] H Busemann, P J Kelly, Projective geometry and projective metrics, Academic Press (1953)

[7] J Faraut, A Korányi, Analysis on symmetric cones, Clarendon (1994)

[8] P Funk, Über Geometrien, bei denen die Geraden die Kürzesten sind, Math. Ann. 101 (1929) 226 | DOI

[9] M Gromov, Hyperbolic manifolds, groups and actions, from: "Riemann surfaces and related topics: proceedings of the 1978 Stony Brook conference" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 183 | DOI

[10] P De La Harpe, On Hilbert’s metric for simplices, from: "Geometric group theory, I" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 97 | DOI

[11] C Kai, A characterization of symmetric cones by an order-reversing property of the pseudoinverse maps, J. Math. Soc. Japan 60 (2008) 1107 | DOI

[12] M Koecher, The Minnesota notes on Jordan algebras and their applications, 1710, Springer (1999) | DOI

[13] B Lemmens, C Walsh, Isometries of polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011) 213 | DOI

[14] V S Matveev, M Troyanov, Isometries of two dimensional Hilbert geometries, Enseign. Math. 61 (2015) 453 | DOI

[15] L Molnár, Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009) 3849 | DOI

[16] L Molnár, G Nagy, Thompson isometries on positive operators : the 2–dimensional case, Electron. J. Linear Algebra 20 (2010) 79 | DOI

[17] W Noll, J J Schäffer, Orders, gauge, and distance in faceless linear cones; with examples relevant to continuum mechanics and relativity, Arch. Rational Mech. Anal. 66 (1977) 345 | DOI

[18] R D Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, 391, Amer. Math. Soc. (1988) | DOI

[19] M A Rieffel, Group C∗–algebras as compact quantum metric spaces, Doc. Math. 7 (2002) 605

[20] O S Rothaus, Order isomorphisms of cones, Proc. Amer. Math. Soc. 17 (1966) 1284 | DOI

[21] T J Speer, Isometries of the Hilbert metric, PhD thesis, University of California, Santa Barbara (2014)

[22] C Walsh, The horofunction boundary of the Hilbert geometry, Adv. Geom. 8 (2008) 503 | DOI

[23] C Walsh, The horoboundary and isometry group of Thurston’s Lipschitz metric, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 327 | DOI

Cité par Sources :