Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that a cone admits a gauge-reversing map if and only if it is a symmetric cone. We use this to prove that every isometry of a Hilbert geometry is a projectivity unless the Hilbert geometry is the projective space of a non-Lorentzian symmetric cone, in which case the projectivity group is of index two in the isometry group. We also determine the isometry group of the Thompson geometry on a cone.
Walsh, Cormac 1
@article{GT_2018_22_1_a1, author = {Walsh, Cormac}, title = {Gauge-reversing maps on cones, and {Hilbert} and {Thompson} isometries}, journal = {Geometry & topology}, pages = {55--104}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, doi = {10.2140/gt.2018.22.55}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.55/} }
Walsh, Cormac. Gauge-reversing maps on cones, and Hilbert and Thompson isometries. Geometry & topology, Tome 22 (2018) no. 1, pp. 55-104. doi : 10.2140/gt.2018.22.55. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.55/
[1] The max-plus Martin boundary, Doc. Math. 14 (2009) 195
, , ,[2] Manifolds of nonpositive curvature, 61, Birkhäuser (1985) | DOI
, , ,[3] Proof that domains of positivity of symmetric nondegenerate bilinear forms are self-dual cones?, MathOverflow post (2010)
,[4] Symmetric cones, the Hilbert and Thompson metrics, preprint (2012)
,[5] The geometry of geodesics, Academic Press (1955)
,[6] Projective geometry and projective metrics, Academic Press (1953)
, ,[7] Analysis on symmetric cones, Clarendon (1994)
, ,[8] Über Geometrien, bei denen die Geraden die Kürzesten sind, Math. Ann. 101 (1929) 226 | DOI
,[9] Hyperbolic manifolds, groups and actions, from: "Riemann surfaces and related topics: proceedings of the 1978 Stony Brook conference" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 183 | DOI
,[10] On Hilbert’s metric for simplices, from: "Geometric group theory, I" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 97 | DOI
,[11] A characterization of symmetric cones by an order-reversing property of the pseudoinverse maps, J. Math. Soc. Japan 60 (2008) 1107 | DOI
,[12] The Minnesota notes on Jordan algebras and their applications, 1710, Springer (1999) | DOI
,[13] Isometries of polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011) 213 | DOI
, ,[14] Isometries of two dimensional Hilbert geometries, Enseign. Math. 61 (2015) 453 | DOI
, ,[15] Thompson isometries of the space of invertible positive operators, Proc. Amer. Math. Soc. 137 (2009) 3849 | DOI
,[16] Thompson isometries on positive operators : the 2–dimensional case, Electron. J. Linear Algebra 20 (2010) 79 | DOI
, ,[17] Orders, gauge, and distance in faceless linear cones; with examples relevant to continuum mechanics and relativity, Arch. Rational Mech. Anal. 66 (1977) 345 | DOI
, ,[18] Hilbert’s projective metric and iterated nonlinear maps, 391, Amer. Math. Soc. (1988) | DOI
,[19] Group C∗–algebras as compact quantum metric spaces, Doc. Math. 7 (2002) 605
,[20] Order isomorphisms of cones, Proc. Amer. Math. Soc. 17 (1966) 1284 | DOI
,[21] Isometries of the Hilbert metric, PhD thesis, University of California, Santa Barbara (2014)
,[22] The horofunction boundary of the Hilbert geometry, Adv. Geom. 8 (2008) 503 | DOI
,[23] The horoboundary and isometry group of Thurston’s Lipschitz metric, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 327 | DOI
,Cité par Sources :