Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a finitely generated subgroup of the outer automorphism group of the rank- free group , there is a corresponding free group extension . We give sufficient conditions for when the extension is hyperbolic. In particular, we show that if all infinite-order elements of are atoroidal and the action of on the free factor complex of has a quasi-isometric orbit map, then is hyperbolic. As an application, we produce examples of hyperbolic –extensions for which has torsion and is not virtually cyclic. The proof of our main theorem involves a detailed study of quasigeodesics in Outer space that make progress in the free factor complex. This may be of independent interest.
Dowdall, Spencer 1 ; Taylor, Samuel 2
@article{GT_2018_22_1_a9, author = {Dowdall, Spencer and Taylor, Samuel}, title = {Hyperbolic extensions of free groups}, journal = {Geometry & topology}, pages = {517--570}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, doi = {10.2140/gt.2018.22.517}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.517/} }
Dowdall, Spencer; Taylor, Samuel. Hyperbolic extensions of free groups. Geometry & topology, Tome 22 (2018) no. 1, pp. 517-570. doi : 10.2140/gt.2018.22.517. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.517/
[1] Strongly contracting geodesics in outer space, Geom. Topol. 15 (2011) 2181 | DOI
,[2] Asymmetry of outer space, Geom. Dedicata 156 (2012) 81 | DOI
, ,[3] A Bers-like proof of the existence of train tracks for free group automorphisms, Fund. Math. 214 (2011) 1 | DOI
,[4] A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85 | DOI
, ,[5] Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014) 104 | DOI
, ,[6] Subfactor projections, J. Topol. 7 (2014) 771 | DOI
, ,[7] Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 | DOI
, , ,[8] Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69 | DOI
, ,[9] Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI
, ,[10] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[11] Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000) 1071 | DOI
,[12] Elements of asymptotic geometry, Eur. Math. Soc. (2007) | DOI
, ,[13] Current twisting and nonsingular matrices, Comment. Math. Helv. 87 (2012) 385 | DOI
, ,[14] Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91 | DOI
, ,[15] The co-surface graph and the geometry of hyperbolic free group extensions, J. Topol. 10 (2017) 447 | DOI
, ,[16] Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002) 91 | DOI
, ,[17] Metric properties of outer space, Publ. Mat. 55 (2011) 433 | DOI
, ,[18] Word hyperbolic extensions of surface groups, preprint (2005)
,[19] Stability of quasi-geodesics in Teichmüller space, Geom. Dedicata 146 (2010) 101 | DOI
,[20] The expansion factors of an outer automorphism and its inverse, Trans. Amer. Math. Soc. 359 (2007) 3185 | DOI
, ,[21] The complex of free factors of a free group, Quart. J. Math. Oxford Ser. 49 (1998) 459 | DOI
, ,[22] Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009) 1805 | DOI
, ,[23] Ping-pong and outer space, J. Topol. Anal. 2 (2010) 173 | DOI
, ,[24] Subgroups of mapping class groups from the geometrical viewpoint, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 119 | DOI
, ,[25] Shadows of mapping class groups: capturing convex cocompactness, Geom. Funct. Anal. 18 (2008) 1270 | DOI
, ,[26] Some hyperbolic Out(FN)–graphs and nonunique ergodicity of very small FN–trees, PhD thesis, The University of Utah (2014)
,[27] Hyperbolic graphs of surface groups, Algebr. Geom. Topol. 11 (2011) 449 | DOI
,[28] A combination theorem for metric bundles, Geom. Funct. Anal. 22 (2012) 1636 | DOI
, ,[29] A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997) 3447 | DOI
,[30] Strong rigidity of locally symmetric spaces, 78, Princeton Univ. Press (1973)
,[31] The Gromov topology on R–trees, Topology Appl. 32 (1989) 197 | DOI
,[32] Topology of finite graphs, Invent. Math. 71 (1983) 551 | DOI
,[33] Right-angled Artin groups and Out(Fn), I : Quasi-isometric embeddings, Groups Geom. Dyn. 9 (2015) 275 | DOI
,[34] Random extensions of free groups and surface groups are hyperbolic, Int. Math. Res. Not. 2016 (2016) 294 | DOI
, ,[35] Gromov hyperbolic spaces, Expo. Math. 23 (2005) 187 | DOI
,Cité par Sources :