Hyperbolic extensions of free groups
Geometry & topology, Tome 22 (2018) no. 1, pp. 517-570.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a finitely generated subgroup Γ Out(F) of the outer automorphism group of the rank-r free group F = Fr, there is a corresponding free group extension 1 F EΓ Γ 1. We give sufficient conditions for when the extension EΓ is hyperbolic. In particular, we show that if all infinite-order elements of Γ are atoroidal and the action of Γ on the free factor complex of F has a quasi-isometric orbit map, then EΓ is hyperbolic. As an application, we produce examples of hyperbolic F–extensions EΓ for which Γ has torsion and is not virtually cyclic. The proof of our main theorem involves a detailed study of quasigeodesics in Outer space that make progress in the free factor complex. This may be of independent interest.

DOI : 10.2140/gt.2018.22.517
Classification : 20F28, 20F67, 20E06, 57M07
Keywords: hyperbolic group extensions, $\mathrm{Out}(\mathbb{F}_n)$, Outer space, free factor complex

Dowdall, Spencer 1 ; Taylor, Samuel 2

1 Department of Mathematics, Vanderbilt University, Nashville, TN, United States
2 Department of Mathematics, Temple University, Philadelphia, PA, United States
@article{GT_2018_22_1_a9,
     author = {Dowdall, Spencer and Taylor, Samuel},
     title = {Hyperbolic extensions of free groups},
     journal = {Geometry & topology},
     pages = {517--570},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.517},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.517/}
}
TY  - JOUR
AU  - Dowdall, Spencer
AU  - Taylor, Samuel
TI  - Hyperbolic extensions of free groups
JO  - Geometry & topology
PY  - 2018
SP  - 517
EP  - 570
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.517/
DO  - 10.2140/gt.2018.22.517
ID  - GT_2018_22_1_a9
ER  - 
%0 Journal Article
%A Dowdall, Spencer
%A Taylor, Samuel
%T Hyperbolic extensions of free groups
%J Geometry & topology
%D 2018
%P 517-570
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.517/
%R 10.2140/gt.2018.22.517
%F GT_2018_22_1_a9
Dowdall, Spencer; Taylor, Samuel. Hyperbolic extensions of free groups. Geometry & topology, Tome 22 (2018) no. 1, pp. 517-570. doi : 10.2140/gt.2018.22.517. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.517/

[1] Y Algom-Kfir, Strongly contracting geodesics in outer space, Geom. Topol. 15 (2011) 2181 | DOI

[2] Y Algom-Kfir, M Bestvina, Asymmetry of outer space, Geom. Dedicata 156 (2012) 81 | DOI

[3] M Bestvina, A Bers-like proof of the existence of train tracks for free group automorphisms, Fund. Math. 214 (2011) 1 | DOI

[4] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85 | DOI

[5] M Bestvina, M Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014) 104 | DOI

[6] M Bestvina, M Feighn, Subfactor projections, J. Topol. 7 (2014) 771 | DOI

[7] M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215 | DOI

[8] M Bestvina, K Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69 | DOI

[9] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI

[10] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[11] P Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000) 1071 | DOI

[12] S Buyalo, V Schroeder, Elements of asymptotic geometry, Eur. Math. Soc. (2007) | DOI

[13] M Clay, A Pettet, Current twisting and nonsingular matrices, Comment. Math. Helv. 87 (2012) 385 | DOI

[14] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91 | DOI

[15] S Dowdall, S J Taylor, The co-surface graph and the geometry of hyperbolic free group extensions, J. Topol. 10 (2017) 447 | DOI

[16] B Farb, L Mosher, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002) 91 | DOI

[17] S Francaviglia, A Martino, Metric properties of outer space, Publ. Mat. 55 (2011) 433 | DOI

[18] U Hamenstädt, Word hyperbolic extensions of surface groups, preprint (2005)

[19] U Hamenstädt, Stability of quasi-geodesics in Teichmüller space, Geom. Dedicata 146 (2010) 101 | DOI

[20] M Handel, L Mosher, The expansion factors of an outer automorphism and its inverse, Trans. Amer. Math. Soc. 359 (2007) 3185 | DOI

[21] A Hatcher, K Vogtmann, The complex of free factors of a free group, Quart. J. Math. Oxford Ser. 49 (1998) 459 | DOI

[22] I Kapovich, M Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009) 1805 | DOI

[23] I Kapovich, M Lustig, Ping-pong and outer space, J. Topol. Anal. 2 (2010) 173 | DOI

[24] R P Kent Iv, C J Leininger, Subgroups of mapping class groups from the geometrical viewpoint, from: "In the tradition of Ahlfors–Bers, IV" (editors D Canary, J Gilman, J Heinonen, H Masur), Contemp. Math. 432, Amer. Math. Soc. (2007) 119 | DOI

[25] R P Kent Iv, C J Leininger, Shadows of mapping class groups: capturing convex cocompactness, Geom. Funct. Anal. 18 (2008) 1270 | DOI

[26] B Mann, Some hyperbolic Out(FN)–graphs and nonunique ergodicity of very small FN–trees, PhD thesis, The University of Utah (2014)

[27] H Min, Hyperbolic graphs of surface groups, Algebr. Geom. Topol. 11 (2011) 449 | DOI

[28] M Mj, P Sardar, A combination theorem for metric bundles, Geom. Funct. Anal. 22 (2012) 1636 | DOI

[29] L Mosher, A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997) 3447 | DOI

[30] G D Mostow, Strong rigidity of locally symmetric spaces, 78, Princeton Univ. Press (1973)

[31] F Paulin, The Gromov topology on R–trees, Topology Appl. 32 (1989) 197 | DOI

[32] J R Stallings, Topology of finite graphs, Invent. Math. 71 (1983) 551 | DOI

[33] S J Taylor, Right-angled Artin groups and Out(Fn), I : Quasi-isometric embeddings, Groups Geom. Dyn. 9 (2015) 275 | DOI

[34] S J Taylor, G Tiozzo, Random extensions of free groups and surface groups are hyperbolic, Int. Math. Res. Not. 2016 (2016) 294 | DOI

[35] J Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005) 187 | DOI

Cité par Sources :