Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that a one-ended simply connected at infinity hyperbolic group with enough codimension- surface subgroups has . By work of Markovic (2013), our result gives a new characterization of virtually fundamental groups of hyperbolic –manifolds.
Beeker, Benjamin 1 ; Lazarovich, Nir 2
@article{GT_2018_22_1_a7, author = {Beeker, Benjamin and Lazarovich, Nir}, title = {Detecting sphere boundaries of hyperbolic groups}, journal = {Geometry & topology}, pages = {439--470}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, doi = {10.2140/gt.2018.22.439}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.439/} }
TY - JOUR AU - Beeker, Benjamin AU - Lazarovich, Nir TI - Detecting sphere boundaries of hyperbolic groups JO - Geometry & topology PY - 2018 SP - 439 EP - 470 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.439/ DO - 10.2140/gt.2018.22.439 ID - GT_2018_22_1_a7 ER -
Beeker, Benjamin; Lazarovich, Nir. Detecting sphere boundaries of hyperbolic groups. Geometry & topology, Tome 22 (2018) no. 1, pp. 439-470. doi : 10.2140/gt.2018.22.439. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.439/
[1] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045
,[2] Concerning continuous curves in metric space, Amer. J. Math. 51 (1929) 577 | DOI
,[3] A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843 | DOI
, ,[4] The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469 | DOI
, ,[5] The Kline sphere characterization problem, Bull. Amer. Math. Soc. 52 (1946) 644 | DOI
,[6] Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145 | DOI
,[7] Quasi-isometries and ends of groups, J. Pure Appl. Algebra 86 (1993) 23 | DOI
,[8] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[9] The theory of negatively curved spaces and groups, from: "Ergodic theory, symbolic dynamics, and hyperbolic spaces" (editors T Bedford, M Keane, C Series), Oxford Univ. Press (1991) 315
,[10] Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011) 851 | DOI
, ,[11] Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321 | DOI
, , , ,[12] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI
, ,[13] Jordan’s proof of the Jordan curve theorem, Studies in Logic, Grammar and Rhetoric 10 (2007) 45
,[14] Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 | DOI
, ,[15] Boundaries of hyperbolic groups, from: "Combinatorial and geometric group theory" (editors S Cleary, R Gilman, A G Myasnikov, V Shpilrain), Contemp. Math. 296, Amer. Math. Soc. (2002) 39 | DOI
, ,[16] On regular CAT(0) cube complexes, preprint (2014)
,[17] Criterion for Cannon’s conjecture, Geom. Funct. Anal. 23 (2013) 1035 | DOI
,[18] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585 | DOI
,[19] CAT(0) cube complexes and groups, from: "Geometric group theory" (editors M Bestvina, M Sageev, K Vogtmann), IAS/Park City Math. Ser. 21, Amer. Math. Soc. (2014) 7
,[20] Quasiconvexity and a theorem of Howson’s, from: "Group theory from a geometrical viewpoint" (editors É Ghys, A Haefliger, A Verjovsky), World Sci. Publ. (1991) 168
,[21] On the cyclic connectivity theorem, Bull. Amer. Math. Soc. 37 (1931) 429 | DOI
,[22] Topology of manifolds, 32, Amer. Math. Soc. (1949)
,Cité par Sources :