Detecting sphere boundaries of hyperbolic groups
Geometry & topology, Tome 22 (2018) no. 1, pp. 439-470.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a one-ended simply connected at infinity hyperbolic group G with enough codimension-1 surface subgroups has GS2. By work of Markovic (2013), our result gives a new characterization of virtually fundamental groups of hyperbolic 3–manifolds.

DOI : 10.2140/gt.2018.22.439
Classification : 20F65, 20F67, 20H10
Keywords: $\mathrm{CAT}(0)$ cube complexes, hyperbolic groups, hyperbolic $3$–manifolds

Beeker, Benjamin 1 ; Lazarovich, Nir 2

1 Department of Mathematics, Haifa University, Jerusalem, Israel
2 Department of Mathematics, ETH Zürich, Zürich, Switzerland
@article{GT_2018_22_1_a7,
     author = {Beeker, Benjamin and Lazarovich, Nir},
     title = {Detecting sphere boundaries of hyperbolic groups},
     journal = {Geometry & topology},
     pages = {439--470},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.439},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.439/}
}
TY  - JOUR
AU  - Beeker, Benjamin
AU  - Lazarovich, Nir
TI  - Detecting sphere boundaries of hyperbolic groups
JO  - Geometry & topology
PY  - 2018
SP  - 439
EP  - 470
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.439/
DO  - 10.2140/gt.2018.22.439
ID  - GT_2018_22_1_a7
ER  - 
%0 Journal Article
%A Beeker, Benjamin
%A Lazarovich, Nir
%T Detecting sphere boundaries of hyperbolic groups
%J Geometry & topology
%D 2018
%P 439-470
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.439/
%R 10.2140/gt.2018.22.439
%F GT_2018_22_1_a7
Beeker, Benjamin; Lazarovich, Nir. Detecting sphere boundaries of hyperbolic groups. Geometry & topology, Tome 22 (2018) no. 1, pp. 439-470. doi : 10.2140/gt.2018.22.439. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.439/

[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045

[2] W L Ayres, Concerning continuous curves in metric space, Amer. J. Math. 51 (1929) 577 | DOI

[3] N Bergeron, D T Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843 | DOI

[4] M Bestvina, G Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469 | DOI

[5] R H Bing, The Kline sphere characterization problem, Bull. Amer. Math. Soc. 52 (1946) 644 | DOI

[6] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145 | DOI

[7] S G Brick, Quasi-isometries and ends of groups, J. Pure Appl. Algebra 86 (1993) 23 | DOI

[8] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[9] J W Cannon, The theory of negatively curved spaces and groups, from: "Ergodic theory, symbolic dynamics, and hyperbolic spaces" (editors T Bedford, M Keane, C Series), Oxford Univ. Press (1991) 315

[10] P E Caprace, M Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011) 851 | DOI

[11] R Gitik, M Mitra, E Rips, M Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321 | DOI

[12] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI

[13] T C Hales, Jordan’s proof of the Jordan curve theorem, Studies in Logic, Grammar and Rhetoric 10 (2007) 45

[14] J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 | DOI

[15] I Kapovich, N Benakli, Boundaries of hyperbolic groups, from: "Combinatorial and geometric group theory" (editors S Cleary, R Gilman, A G Myasnikov, V Shpilrain), Contemp. Math. 296, Amer. Math. Soc. (2002) 39 | DOI

[16] N Lazarovich, On regular CAT(0) cube complexes, preprint (2014)

[17] V Markovic, Criterion for Cannon’s conjecture, Geom. Funct. Anal. 23 (2013) 1035 | DOI

[18] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585 | DOI

[19] M Sageev, CAT(0) cube complexes and groups, from: "Geometric group theory" (editors M Bestvina, M Sageev, K Vogtmann), IAS/Park City Math. Ser. 21, Amer. Math. Soc. (2014) 7

[20] H Short, Quasiconvexity and a theorem of Howson’s, from: "Group theory from a geometrical viewpoint" (editors É Ghys, A Haefliger, A Verjovsky), World Sci. Publ. (1991) 168

[21] G T Whyburn, On the cyclic connectivity theorem, Bull. Amer. Math. Soc. 37 (1931) 429 | DOI

[22] R L Wilder, Topology of manifolds, 32, Amer. Math. Soc. (1949)

Cité par Sources :