Stein fillings and SU(2) representations
Geometry & topology, Tome 22 (2018) no. 7, pp. 4307-4380.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We recently defined invariants of contact 3–manifolds using a version of instanton Floer homology for sutured manifolds. In this paper, we prove that if several contact structures on a 3–manifold are induced by Stein structures on a single 4–manifold with distinct Chern classes modulo torsion then their contact invariants in sutured instanton homology are linearly independent. As a corollary, we show that if a 3–manifold bounds a Stein domain that is not an integer homology ball then its fundamental group admits a nontrivial homomorphism to SU(2). We give several new applications of these results, proving the existence of nontrivial and irreducible SU(2) representations for a variety of 3–manifold groups.

DOI : 10.2140/gt.2018.22.4307
Classification : 53D40, 53D10, 57R17, 57M27, 57R58
Keywords: contact structures, Stein fillings, instanton Floer homology

Baldwin, John 1 ; Sivek, Steven 2

1 Department of Mathematics, Boston College, Chestnut Hill, MA, United States
2 Department of Mathematics, Imperial College London, London, United Kingdom
@article{GT_2018_22_7_a12,
     author = {Baldwin, John and Sivek, Steven},
     title = {Stein fillings and {SU(2)} representations},
     journal = {Geometry & topology},
     pages = {4307--4380},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2018},
     doi = {10.2140/gt.2018.22.4307},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4307/}
}
TY  - JOUR
AU  - Baldwin, John
AU  - Sivek, Steven
TI  - Stein fillings and SU(2) representations
JO  - Geometry & topology
PY  - 2018
SP  - 4307
EP  - 4380
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4307/
DO  - 10.2140/gt.2018.22.4307
ID  - GT_2018_22_7_a12
ER  - 
%0 Journal Article
%A Baldwin, John
%A Sivek, Steven
%T Stein fillings and SU(2) representations
%J Geometry & topology
%D 2018
%P 4307-4380
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4307/
%R 10.2140/gt.2018.22.4307
%F GT_2018_22_7_a12
Baldwin, John; Sivek, Steven. Stein fillings and SU(2) representations. Geometry & topology, Tome 22 (2018) no. 7, pp. 4307-4380. doi : 10.2140/gt.2018.22.4307. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4307/

[1] S Akbulut, J D Mccarthy, Casson’s invariant for oriented homology 3–spheres : an exposition, 36, Princeton Univ. Press (1990) | DOI

[2] S Akbulut, B Ozbagci, Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001) 319 | DOI

[3] D Auckly, Two-fold branched covers, J. Knot Theory Ramifications 23 (2014) | DOI

[4] J A Baldwin, S Sivek, Naturality in sutured monopole and instanton homology, J. Differential Geom. 100 (2015) 395 | DOI

[5] J A Baldwin, S Sivek, Instanton Floer homology and contact structures, Selecta Math. 22 (2016) 939 | DOI

[6] R İ Baykur, Minimality and fiber sum decompositions of Lefschetz fibrations, Proc. Amer. Math. Soc. 144 (2016) 2275 | DOI

[7] S A Bleiler, C D Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996) 809 | DOI

[8] S Boyer, A Nicas, Varieties of group representations and Casson’s invariant for rational homology 3–spheres, Trans. Amer. Math. Soc. 322 (1990) 507 | DOI

[9] P J Braam, S K Donaldson, Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI

[10] P J Braam, S K Donaldson, Fukaya–Floer homology and gluing formulae for polynomial invariants, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 257 | DOI

[11] J M Cohen, The commutator subgroup made abelian, Proc. Amer. Math. Soc. 38 (1973) 507 | DOI

[12] C Cornwell, L Ng, S Sivek, Obstructions to Lagrangian concordance, Algebr. Geom. Topol. 16 (2016) 797 | DOI

[13] M Culler, N M Dunfield, J R Weeks, SnapPy : a computer program for studying the topology of 3–manifolds, (2016)

[14] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237 | DOI

[15] M Culler, P B Shalen, Varieties of group representations and splittings of 3–manifolds, Ann. of Math. 117 (1983) 109 | DOI

[16] S K Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257 | DOI

[17] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI

[18] Y Eliashberg, Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, II" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45 | DOI

[19] P M N Feehan, T G Leness, A general SO(3)–monopole cobordism formula relating Donaldson and Seiberg–Witten invariants, preprint (2002)

[20] R Fintushel, R J Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980) 33 | DOI

[21] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61 (1990) 109 | DOI

[22] A Floer, An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215 | DOI

[23] A Floer, Instanton homology, surgery, and knots, from: "Geometry of low-dimensional manifolds, I" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 150, Cambridge Univ. Press (1990) 97 | DOI

[24] K A Frøyshov, Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI

[25] K Fukaya, Floer homology for oriented 3–manifolds, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 1 | DOI

[26] M Furuta, B Steer, Seifert fibred homology 3–spheres and the Yang–Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992) 38 | DOI

[27] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians" (editor L Tatsien), Higher Ed. Press (2002) 405

[28] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI

[29] C M Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983) 687 | DOI

[30] M Hedden, C M Herald, P Kirk, The pillowcase and perturbations of traceless representations of knot groups, Geom. Topol. 18 (2014) 211 | DOI

[31] J Hoste, A formula for Casson’s invariant, Trans. Amer. Math. Soc. 297 (1986) 547 | DOI

[32] R Kirby, Problems in low dimensional manifold theory, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 273

[33] P B Kronheimer, T S Mrowka, Embedded surfaces and the structure of Donaldson’s polynomial invariants, J. Differential Geom. 41 (1995) 573 | DOI

[34] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces, II, Topology 34 (1995) 37 | DOI

[35] P B Kronheimer, T S Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004) 741 | DOI

[36] P B Kronheimer, T S Mrowka, Witten’s conjecture and property P, Geom. Topol. 8 (2004) 295 | DOI

[37] P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 | DOI

[38] P B Kronheimer, T S Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI

[39] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI

[40] J Lin, SU(2)–cyclic surgeries on knots, Int. Math. Res. Not. 2016 (2016) 6018 | DOI

[41] P Lisca, G Matić, Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509 | DOI

[42] A Loi, R Piergallini, Compact Stein surfaces with boundary as branched covers of B4, Invent. Math. 143 (2001) 325 | DOI

[43] B Martelli, An introduction to geometric topology, preprint (2016)

[44] J W Morgan, T Mrowka, D Ruberman, The L2–moduli space and a vanishing theorem for Donaldson polynomial invariants, II, International (1994)

[45] V Muñoz, Ring structure of the Floer cohomology of Σ × S1, Topology 38 (1999) 517 | DOI

[46] P Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1 | DOI

[47] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI

[48] O Plamenevskaya, Contact structures with distinct Heegaard Floer invariants, Math. Res. Lett. 11 (2004) 547 | DOI

[49] L Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155 | DOI

[50] T S Developers, SageMath : the Sage mathematics software system, version 6.10 (2015)

[51] C W Scaduto, Instantons and odd Khovanov homology, J. Topol. 8 (2015) 744 | DOI

[52] T Shibuya, Genus of torus links and cable links, Kobe J. Math. 6 (1989) 37

[53] S Sivek, Donaldson invariants of symplectic manifolds, Int. Math. Res. Not. 2015 (2015) 1688 | DOI

[54] A I Stipsicz, Singular fibers in Lefschetz fibrations on manifolds with b2+ = 1, Topology Appl. 117 (2002) 9 | DOI

[55] T Tanaka, Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Amer. Math. Soc. 127 (1999) 3427 | DOI

[56] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[57] A Weil, Remarks on the cohomology of groups, Ann. of Math. 80 (1964) 149 | DOI

[58] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 | DOI

[59] R Zentner, A class of knots with simple SU(2)–representations, Selecta Math. 23 (2017) 2219 | DOI

[60] R Zentner, Integer homology 3–spheres admit irreducible representations in SL(2, C), Duke Math. J. 167 (2018) 1643 | DOI

Cité par Sources :