Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We recently defined invariants of contact –manifolds using a version of instanton Floer homology for sutured manifolds. In this paper, we prove that if several contact structures on a –manifold are induced by Stein structures on a single –manifold with distinct Chern classes modulo torsion then their contact invariants in sutured instanton homology are linearly independent. As a corollary, we show that if a –manifold bounds a Stein domain that is not an integer homology ball then its fundamental group admits a nontrivial homomorphism to . We give several new applications of these results, proving the existence of nontrivial and irreducible representations for a variety of –manifold groups.
Baldwin, John 1 ; Sivek, Steven 2
@article{GT_2018_22_7_a12, author = {Baldwin, John and Sivek, Steven}, title = {Stein fillings and {SU(2)} representations}, journal = {Geometry & topology}, pages = {4307--4380}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.4307}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4307/} }
Baldwin, John; Sivek, Steven. Stein fillings and SU(2) representations. Geometry & topology, Tome 22 (2018) no. 7, pp. 4307-4380. doi : 10.2140/gt.2018.22.4307. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4307/
[1] Casson’s invariant for oriented homology 3–spheres : an exposition, 36, Princeton Univ. Press (1990) | DOI
, ,[2] Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001) 319 | DOI
, ,[3] Two-fold branched covers, J. Knot Theory Ramifications 23 (2014) | DOI
,[4] Naturality in sutured monopole and instanton homology, J. Differential Geom. 100 (2015) 395 | DOI
, ,[5] Instanton Floer homology and contact structures, Selecta Math. 22 (2016) 939 | DOI
, ,[6] Minimality and fiber sum decompositions of Lefschetz fibrations, Proc. Amer. Math. Soc. 144 (2016) 2275 | DOI
,[7] Spherical space forms and Dehn filling, Topology 35 (1996) 809 | DOI
, ,[8] Varieties of group representations and Casson’s invariant for rational homology 3–spheres, Trans. Amer. Math. Soc. 322 (1990) 507 | DOI
, ,[9] Floer’s work on instanton homology, knots and surgery, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 195 | DOI
, ,[10] Fukaya–Floer homology and gluing formulae for polynomial invariants, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 257 | DOI
, ,[11] The commutator subgroup made abelian, Proc. Amer. Math. Soc. 38 (1973) 507 | DOI
,[12] Obstructions to Lagrangian concordance, Algebr. Geom. Topol. 16 (2016) 797 | DOI
, , ,[13] SnapPy : a computer program for studying the topology of 3–manifolds, (2016)
, , ,[14] Dehn surgery on knots, Ann. of Math. 125 (1987) 237 | DOI
, , , ,[15] Varieties of group representations and splittings of 3–manifolds, Ann. of Math. 117 (1983) 109 | DOI
, ,[16] Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257 | DOI
,[17] Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002) | DOI
,[18] Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, II" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45 | DOI
,[19] A general SO(3)–monopole cobordism formula relating Donaldson and Seiberg–Witten invariants, preprint (2002)
, ,[20] Constructing lens spaces by surgery on knots, Math. Z. 175 (1980) 33 | DOI
, ,[21] Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61 (1990) 109 | DOI
, ,[22] An instanton-invariant for 3–manifolds, Comm. Math. Phys. 118 (1988) 215 | DOI
,[23] Instanton homology, surgery, and knots, from: "Geometry of low-dimensional manifolds, I" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 150, Cambridge Univ. Press (1990) 97 | DOI
,[24] Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 | DOI
,[25] Floer homology for oriented 3–manifolds, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 1 | DOI
,[26] Seifert fibred homology 3–spheres and the Yang–Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992) 38 | DOI
, ,[27] Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians" (editor L Tatsien), Higher Ed. Press (2002) 405
,[28] Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI
,[29] Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983) 687 | DOI
,[30] The pillowcase and perturbations of traceless representations of knot groups, Geom. Topol. 18 (2014) 211 | DOI
, , ,[31] A formula for Casson’s invariant, Trans. Amer. Math. Soc. 297 (1986) 547 | DOI
,[32] Problems in low dimensional manifold theory, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 273
,[33] Embedded surfaces and the structure of Donaldson’s polynomial invariants, J. Differential Geom. 41 (1995) 573 | DOI
, ,[34] Gauge theory for embedded surfaces, II, Topology 34 (1995) 37 | DOI
, ,[35] Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004) 741 | DOI
, ,[36] Witten’s conjecture and property P, Geom. Topol. 8 (2004) 295 | DOI
, ,[37] Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 | DOI
, ,[38] Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011) 97 | DOI
, ,[39] Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI
, , , ,[40] SU(2)–cyclic surgeries on knots, Int. Math. Res. Not. 2016 (2016) 6018 | DOI
,[41] Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509 | DOI
, ,[42] Compact Stein surfaces with boundary as branched covers of B4, Invent. Math. 143 (2001) 325 | DOI
, ,[43] An introduction to geometric topology, preprint (2016)
,[44] The L2–moduli space and a vanishing theorem for Donaldson polynomial invariants, II, International (1994)
, , ,[45] Ring structure of the Floer cohomology of Σ × S1, Topology 38 (1999) 517 | DOI
,[46] Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1 | DOI
, ,[47] On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI
, ,[48] Contact structures with distinct Heegaard Floer invariants, Math. Res. Lett. 11 (2004) 547 | DOI
,[49] An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155 | DOI
,[50] SageMath : the Sage mathematics software system, version 6.10 (2015)
,[51] Instantons and odd Khovanov homology, J. Topol. 8 (2015) 744 | DOI
,[52] Genus of torus links and cable links, Kobe J. Math. 6 (1989) 37
,[53] Donaldson invariants of symplectic manifolds, Int. Math. Res. Not. 2015 (2015) 1688 | DOI
,[54] Singular fibers in Lefschetz fibrations on manifolds with b2+ = 1, Topology Appl. 117 (2002) 9 | DOI
,[55] Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Amer. Math. Soc. 127 (1999) 3427 | DOI
,[56] The geometry and topology of three-manifolds, lecture notes (1979)
,[57] Remarks on the cohomology of groups, Ann. of Math. 80 (1964) 149 | DOI
,[58] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 | DOI
,[59] A class of knots with simple SU(2)–representations, Selecta Math. 23 (2017) 2219 | DOI
,[60] Integer homology 3–spheres admit irreducible representations in SL(2, C), Duke Math. J. 167 (2018) 1643 | DOI
,Cité par Sources :