Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that every quasi-isometry of Teichmüller space equipped with the Teichmüller metric is a bounded distance from an isometry of Teichmüller space. That is, Teichmüller space is quasi-isometrically rigid.
Eskin, Alex 1 ; Masur, Howard 1 ; Rafi, Kasra 2
@article{GT_2018_22_7_a11, author = {Eskin, Alex and Masur, Howard and Rafi, Kasra}, title = {Rigidity of {Teichm\"uller} space}, journal = {Geometry & topology}, pages = {4259--4306}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.4259}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4259/} }
TY - JOUR AU - Eskin, Alex AU - Masur, Howard AU - Rafi, Kasra TI - Rigidity of Teichmüller space JO - Geometry & topology PY - 2018 SP - 4259 EP - 4306 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4259/ DO - 10.2140/gt.2018.22.4259 ID - GT_2018_22_7_a11 ER -
Eskin, Alex; Masur, Howard; Rafi, Kasra. Rigidity of Teichmüller space. Geometry & topology, Tome 22 (2018) no. 7, pp. 4259-4306. doi : 10.2140/gt.2018.22.4259. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4259/
[1] Geometry and rigidity of mapping class groups, Geom. Topol. 16 (2012) 781 | DOI
, , , ,[2] Large-scale rank and rigidity of the Weil–Petersson metric, preprint (2015)
,[3] Large-scale rank and rigidity of the Teichmüller metric, J. Topol. 9 (2016) 985 | DOI
,[4] Large-scale rigidity properties of the mapping class groups, Pacific J. Math. 293 (2018) 1 | DOI
,[5] Lines of minima and Teichmüller geodesics, Geom. Funct. Anal. 18 (2008) 698 | DOI
, , ,[6] Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321 | DOI
,[7] Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653 | DOI
, ,[8] Quasi-flats in H2 × H2, from: "Lie groups and ergodic theory" (editor S G Dani), Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res. (1998) 75
, ,[9] Coarse differentiation of quasi-isometries, I : Spaces not quasi-isometric to Cayley graphs, Ann. of Math. 176 (2012) 221 | DOI
, , ,[10] Coarse differentiation of quasi-isometries, II : Rigidity for Sol and lamplighter groups, Ann. of Math. 177 (2013) 869 | DOI
, , ,[11] Large-scale rank of Teichmüller space, Duke Math. J. 166 (2017) 1517 | DOI
, , ,[12] A primer on mapping class groups, 49, Princeton Univ. Press (2012)
, ,[13] Geometry of the mapping class groups, III: Quasi-isometric rigidity, preprint (2007)
,[14] Teichmüller theory and applications to geometry, topology, and dynamics, I, Matrix Editions (2006)
,[15] Automorphism of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not. 1997 (1997) 651 | DOI
,[16] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 | DOI
, ,[17] Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 | DOI
, ,[18] Extremal length estimates and product regions in Teichmüller space, Duke Math. J. 83 (1996) 249 | DOI
,[19] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 | DOI
,[20] Coarse differentiation and quasi-isometries of a class of solvable Lie groups, I, Geom. Topol. 15 (2011) 1883 | DOI
,[21] Coarse differentiation and quasi-isometries of a class of solvable Lie groups, II, Geom. Topol. 15 (2011) 1927 | DOI
,[22] A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17 (2007) 936 | DOI
,[23] Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025 | DOI
,[24] Automorphisms and isometries of Teichmüller space, from: "Advances in the theory of Riemann surfaces" (editors L V Ahlfors, L Bers, H M Farkas, R C Gunning, I Kra, H E Rauch), Ann. of Math. Studies 66, Princeton Univ. Press (1971) 369
,[25] The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995) 133 | DOI
,[26] Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996) 75 | DOI
,Cité par Sources :