Rigidity of Teichmüller space
Geometry & topology, Tome 22 (2018) no. 7, pp. 4259-4306.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that every quasi-isometry of Teichmüller space equipped with the Teichmüller metric is a bounded distance from an isometry of Teichmüller space. That is, Teichmüller space is quasi-isometrically rigid.

DOI : 10.2140/gt.2018.22.4259
Classification : 32G15
Keywords: quasi-isometric rigidity, Teichmüller metric

Eskin, Alex 1 ; Masur, Howard 1 ; Rafi, Kasra 2

1 Department of Mathematics, University of Chicago, Chicago, IL, % 60637-1514, United States
2 Department of Mathematics, University of Toronto, Toronto, ON, % M5S 2E4, Canada
@article{GT_2018_22_7_a11,
     author = {Eskin, Alex and Masur, Howard and Rafi, Kasra},
     title = {Rigidity of {Teichm\"uller} space},
     journal = {Geometry & topology},
     pages = {4259--4306},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2018},
     doi = {10.2140/gt.2018.22.4259},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4259/}
}
TY  - JOUR
AU  - Eskin, Alex
AU  - Masur, Howard
AU  - Rafi, Kasra
TI  - Rigidity of Teichmüller space
JO  - Geometry & topology
PY  - 2018
SP  - 4259
EP  - 4306
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4259/
DO  - 10.2140/gt.2018.22.4259
ID  - GT_2018_22_7_a11
ER  - 
%0 Journal Article
%A Eskin, Alex
%A Masur, Howard
%A Rafi, Kasra
%T Rigidity of Teichmüller space
%J Geometry & topology
%D 2018
%P 4259-4306
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4259/
%R 10.2140/gt.2018.22.4259
%F GT_2018_22_7_a11
Eskin, Alex; Masur, Howard; Rafi, Kasra. Rigidity of Teichmüller space. Geometry & topology, Tome 22 (2018) no. 7, pp. 4259-4306. doi : 10.2140/gt.2018.22.4259. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4259/

[1] J Behrstock, B Kleiner, Y Minsky, L Mosher, Geometry and rigidity of mapping class groups, Geom. Topol. 16 (2012) 781 | DOI

[2] B Bowditch, Large-scale rank and rigidity of the Weil–Petersson metric, preprint (2015)

[3] B H Bowditch, Large-scale rank and rigidity of the Teichmüller metric, J. Topol. 9 (2016) 985 | DOI

[4] B H Bowditch, Large-scale rigidity properties of the mapping class groups, Pacific J. Math. 293 (2018) 1 | DOI

[5] Y E Choi, K Rafi, C Series, Lines of minima and Teichmüller geodesics, Geom. Funct. Anal. 18 (2008) 698 | DOI

[6] A Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321 | DOI

[7] A Eskin, B Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653 | DOI

[8] A Eskin, B Farb, Quasi-flats in H2 × H2, from: "Lie groups and ergodic theory" (editor S G Dani), Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res. (1998) 75

[9] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries, I : Spaces not quasi-isometric to Cayley graphs, Ann. of Math. 176 (2012) 221 | DOI

[10] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries, II : Rigidity for Sol and lamplighter groups, Ann. of Math. 177 (2013) 869 | DOI

[11] A Eskin, H Masur, K Rafi, Large-scale rank of Teichmüller space, Duke Math. J. 166 (2017) 1517 | DOI

[12] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[13] U Hamenstädt, Geometry of the mapping class groups, III: Quasi-isometric rigidity, preprint (2007)

[14] J H Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics, I, Matrix Editions (2006)

[15] N V Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Int. Math. Res. Not. 1997 (1997) 651 | DOI

[16] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 | DOI

[17] H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 | DOI

[18] Y N Minsky, Extremal length estimates and product regions in Teichmüller space, Duke Math. J. 83 (1996) 249 | DOI

[19] P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 | DOI

[20] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups, I, Geom. Topol. 15 (2011) 1883 | DOI

[21] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups, II, Geom. Topol. 15 (2011) 1927 | DOI

[22] K Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17 (2007) 936 | DOI

[23] K Rafi, Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025 | DOI

[24] H L Royden, Automorphisms and isometries of Teichmüller space, from: "Advances in the theory of Riemann surfaces" (editors L V Ahlfors, L Bers, H M Farkas, R C Gunning, I Kra, H E Rauch), Ann. of Math. Studies 66, Princeton Univ. Press (1971) 369

[25] R E Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. 82 (1995) 133 | DOI

[26] R E Schwartz, Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996) 75 | DOI

Cité par Sources :