Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove the Prym–Green conjecture on minimal free resolutions of paracanonical curves of odd genus. The proof proceeds via curves lying on ruled surfaces over an elliptic curve.
Farkas, Gavril 1 ; Kemeny, Michael 2
@article{GT_2018_22_7_a10, author = {Farkas, Gavril and Kemeny, Michael}, title = {The resolution of paracanonical curves of odd genus}, journal = {Geometry & topology}, pages = {4235--4257}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.4235}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4235/} }
TY - JOUR AU - Farkas, Gavril AU - Kemeny, Michael TI - The resolution of paracanonical curves of odd genus JO - Geometry & topology PY - 2018 SP - 4235 EP - 4257 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4235/ DO - 10.2140/gt.2018.22.4235 ID - GT_2018_22_7_a10 ER -
Farkas, Gavril; Kemeny, Michael. The resolution of paracanonical curves of odd genus. Geometry & topology, Tome 22 (2018) no. 7, pp. 4235-4257. doi : 10.2140/gt.2018.22.4235. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4235/
[1] Koszul cohomology and algebraic geometry, 52, Amer. Math. Soc. (2010)
, ,[2] On hyperplane sections of K3 surfaces, Algebr. Geom. 4 (2017) 562
, , ,[3] Prym varieties and the Schottky problem, Invent. Math. 41 (1977) 149 | DOI
,[4] Some stable vector bundles with reducible theta divisor, Manuscripta Math. 110 (2003) 343 | DOI
,[5] Complex abelian varieties, 302, Springer (2004) | DOI
, ,[6] Hilbert functions and Betti numbers in a flat family, Ann. Mat. Pura Appl. 142 (1985) 277 | DOI
, ,[7] Syzygies of torsion bundles and the geometry of the level l modular variety over Mg, Invent. Math. 194 (2013) 73 | DOI
, , , ,[8] Syzygies of Prym and paracanonical curves of genus 8, Épijournal Geom. Algébrique 1 (2017)
, , , ,[9] The generic Green–Lazarsfeld secant conjecture, Invent. Math. 203 (2016) 265 | DOI
, ,[10] The Prym–Green conjecture for torsion line bundles of high order, Duke Math. J. 166 (2017) 1103 | DOI
, ,[11] The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. 12 (2010) 755 | DOI
, ,[12] Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves, Ann. Sci. École Norm. Sup. 36 (2003) 553 | DOI
, , ,[13] Du Val curves and the pointed Brill–Noether theorem, Selecta Math. 23 (2017) 2243 | DOI
, ,[14] On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271 | DOI
, ,[15] Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984) 125 | DOI
,[16] On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986) 73 | DOI
, ,[17] New evidence for Green’s conjecture on syzygies of canonical curves, Ann. Sci. École Norm. Sup. 31 (1998) 145 | DOI
, ,[18] Revêtements tangentiels et condition de Brill–Noether, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 815
,[19] Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005) 1163 | DOI
,Cité par Sources :