The resolution of paracanonical curves of odd genus
Geometry & topology, Tome 22 (2018) no. 7, pp. 4235-4257.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the Prym–Green conjecture on minimal free resolutions of paracanonical curves of odd genus. The proof proceeds via curves lying on ruled surfaces over an elliptic curve.

DOI : 10.2140/gt.2018.22.4235
Classification : 14H10
Keywords: syzygy, paracanonical curve, ruled elliptic surface

Farkas, Gavril 1 ; Kemeny, Michael 2

1 Institut für Mathematik, Humboldt Universität zu Berlin, Berlin, Germany
2 Department of Mathematics, Stanford University, Palo Alto, CA, United States
@article{GT_2018_22_7_a10,
     author = {Farkas, Gavril and Kemeny, Michael},
     title = {The resolution of paracanonical curves of odd genus},
     journal = {Geometry & topology},
     pages = {4235--4257},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2018},
     doi = {10.2140/gt.2018.22.4235},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4235/}
}
TY  - JOUR
AU  - Farkas, Gavril
AU  - Kemeny, Michael
TI  - The resolution of paracanonical curves of odd genus
JO  - Geometry & topology
PY  - 2018
SP  - 4235
EP  - 4257
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4235/
DO  - 10.2140/gt.2018.22.4235
ID  - GT_2018_22_7_a10
ER  - 
%0 Journal Article
%A Farkas, Gavril
%A Kemeny, Michael
%T The resolution of paracanonical curves of odd genus
%J Geometry & topology
%D 2018
%P 4235-4257
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4235/
%R 10.2140/gt.2018.22.4235
%F GT_2018_22_7_a10
Farkas, Gavril; Kemeny, Michael. The resolution of paracanonical curves of odd genus. Geometry & topology, Tome 22 (2018) no. 7, pp. 4235-4257. doi : 10.2140/gt.2018.22.4235. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4235/

[1] M Aprodu, J Nagel, Koszul cohomology and algebraic geometry, 52, Amer. Math. Soc. (2010)

[2] E Arbarello, A Bruno, E Sernesi, On hyperplane sections of K3 surfaces, Algebr. Geom. 4 (2017) 562

[3] A Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977) 149 | DOI

[4] A Beauville, Some stable vector bundles with reducible theta divisor, Manuscripta Math. 110 (2003) 343 | DOI

[5] C Birkenhake, H Lange, Complex abelian varieties, 302, Springer (2004) | DOI

[6] M Boratyński, S Greco, Hilbert functions and Betti numbers in a flat family, Ann. Mat. Pura Appl. 142 (1985) 277 | DOI

[7] A Chiodo, D Eisenbud, G Farkas, F O Schreyer, Syzygies of torsion bundles and the geometry of the level l modular variety over Mg, Invent. Math. 194 (2013) 73 | DOI

[8] E Colombo, G Farkas, A Verra, C Voisin, Syzygies of Prym and paracanonical curves of genus 8, Épijournal Geom. Algébrique 1 (2017)

[9] G Farkas, M Kemeny, The generic Green–Lazarsfeld secant conjecture, Invent. Math. 203 (2016) 265 | DOI

[10] G Farkas, M Kemeny, The Prym–Green conjecture for torsion line bundles of high order, Duke Math. J. 166 (2017) 1103 | DOI

[11] G Farkas, K Ludwig, The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. 12 (2010) 755 | DOI

[12] G Farkas, M Mustaţǎ, M Popa, Divisors on Mg,g+1 and the minimal resolution conjecture for points on canonical curves, Ann. Sci. École Norm. Sup. 36 (2003) 553 | DOI

[13] G Farkas, N Tarasca, Du Val curves and the pointed Brill–Noether theorem, Selecta Math. 23 (2017) 2243 | DOI

[14] W Fulton, R Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271 | DOI

[15] M L Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984) 125 | DOI

[16] M Green, R Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986) 73 | DOI

[17] A Hirschowitz, S Ramanan, New evidence for Green’s conjecture on syzygies of canonical curves, Ann. Sci. École Norm. Sup. 31 (1998) 145 | DOI

[18] A Treibich, Revêtements tangentiels et condition de Brill–Noether, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 815

[19] C Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus, Compos. Math. 141 (2005) 1163 | DOI

Cité par Sources :