Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Building on an idea laid out by Martelli, Sparks and Yau (2008), we use the Duistermaat–Heckman localization formula and an extension of it to give rational and explicit expressions of the volume, the total transversal scalar curvature and the Einstein–Hilbert functional, seen as functionals on the Sasaki cone (Reeb cone). Studying the leading terms, we prove they are all proper. Among consequences thereof we get that the Einstein–Hilbert functional attains its minimal value and each Sasaki cone possesses at least one Reeb vector field with vanishing transverse Futaki invariant.
Boyer, Charles 1 ; Huang, Hongnian 1 ; Legendre, Eveline 2
@article{GT_2018_22_7_a9, author = {Boyer, Charles and Huang, Hongnian and Legendre, Eveline}, title = {An application of the {Duistermaat{\textendash}Heckman} theorem and its extensions in {Sasaki} geometry}, journal = {Geometry & topology}, pages = {4205--4234}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.4205}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4205/} }
TY - JOUR AU - Boyer, Charles AU - Huang, Hongnian AU - Legendre, Eveline TI - An application of the Duistermaat–Heckman theorem and its extensions in Sasaki geometry JO - Geometry & topology PY - 2018 SP - 4205 EP - 4234 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4205/ DO - 10.2140/gt.2018.22.4205 ID - GT_2018_22_7_a9 ER -
%0 Journal Article %A Boyer, Charles %A Huang, Hongnian %A Legendre, Eveline %T An application of the Duistermaat–Heckman theorem and its extensions in Sasaki geometry %J Geometry & topology %D 2018 %P 4205-4234 %V 22 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4205/ %R 10.2140/gt.2018.22.4205 %F GT_2018_22_7_a9
Boyer, Charles; Huang, Hongnian; Legendre, Eveline. An application of the Duistermaat–Heckman theorem and its extensions in Sasaki geometry. Geometry & topology, Tome 22 (2018) no. 7, pp. 4205-4234. doi : 10.2140/gt.2018.22.4205. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4205/
[1] The moment map and equivariant cohomology, Topology 23 (1984) 1 | DOI
, ,[2] The topology of torus actions on symplectic manifolds, 93, Birkhäuser (1991) 181 | DOI
,[3] Heat kernels and Dirac operators, 298, Springer (1992) | DOI
, , ,[4] Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983) 539 | DOI
, ,[5] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013) 201 | DOI
, , , ,[6] Relative K–stability and extremal Sasaki metrics, Math. Res. Lett. 25 (2018) 1 | DOI
, ,[7] Sasakian geometry, Oxford Univ. Press (2008)
, ,[8] Canonical Sasakian metrics, Comm. Math. Phys. 279 (2008) 705 | DOI
, , ,[9] The Einstein–Hilbert functional and the Sasaki–Futaki invariant, Int. Math. Res. Not. 2017 (2017) 1942 | DOI
, , , ,[10] Extremal Sasakian geometry on S3–bundles over Riemann surfaces, Int. Math. Res. Not. 2014 (2014) 5510 | DOI
, ,[11] The Sasaki join, Hamiltonian 2–forms, and constant scalar curvature, J. Geom. Anal. 26 (2016) 1023 | DOI
, ,[12] K–semistability for irregular Sasakian manifolds, J. Differential Geom. 109 (2018) 81 | DOI
, ,[13] Singular Hermitian metrics on positive line bundles, from: "Complex algebraic varieties" (editors K Hulek, T Peternell, M Schneider, F O Schreyer), Lecture Notes in Math. 1507, Springer (1992) 87 | DOI
,[14] Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002) 289 | DOI
,[15] Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009) 83 | DOI
,[16] On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259 | DOI
, ,[17] Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds, J. Differential Geom. 83 (2009) 585 | DOI
, , ,[18] Calabi’s extremal Kähler metrics : an elementary introduction, book project (2015)
,[19] Convexity properties of the moment mapping, Invent. Math. 67 (1982) 491 | DOI
, ,[20] The generalized Frankel conjecture in Sasaki geometry, Int. Math. Res. Not. 2015 (2015) 99 | DOI
, ,[21] Scalar curvature and uniruledness on projective manifolds, Comm. Anal. Geom. 20 (2012) 751 | DOI
, ,[22] Einstein metrics on five-dimensional Seifert bundles, J. Geom. Anal. 15 (2005) 445 | DOI
,[23] Existence and non-uniqueness of constant scalar curvature toric Sasaki metrics, Compos. Math. 147 (2011) 1613 | DOI
,[24] Contact toric manifolds, J. Symplectic Geom. 1 (2003) 785
,[25] Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997) 4201 | DOI
, ,[26] The geometric dual of a–maximisation for toric Sasaki–Einstein manifolds, Comm. Math. Phys. 268 (2006) 39 | DOI
, , ,[27] Sasaki–Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008) 611 | DOI
, , ,[28] Introduction to symplectic topology, Clarendon (1995)
, ,[29] A numerical criterion for uniruledness, Ann. of Math. 124 (1986) 65 | DOI
, ,[30] Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics, J. Differential Geom. 88 (2011) 109 | DOI
, ,[31] K–stability of constant scalar curvature Kähler manifolds, Adv. Math. 221 (2009) 1397 | DOI
,[32] Kähler–Einstein metrics on algebraic manifolds, from: "Transcendental methods in algebraic geometry" (editors F Catanese, C Ciliberto), Lecture Notes in Math. 1646, Springer (1996) 143 | DOI
,[33] Manifold maps commuting with the Laplacian, J. Differential Geometry 8 (1973) 85 | DOI
,Cité par Sources :