We relate endotrivial representations of a finite group in characteristic p to equivariant line bundles on the simplicial complex of nontrivial p–subgroups, by means of weak homomorphisms.
Keywords: endotrivial modules, line bundles, Brown complex, Brown Quillen complex of $p$–subgroups, weak homomorphism
Balmer, Paul 1
@article{10_2140_gt_2018_22_4145,
author = {Balmer, Paul},
title = {Endotrivial representations of finite groups and equivariant line bundles on the {Brown} complex},
journal = {Geometry & topology},
pages = {4145--4161},
year = {2018},
volume = {22},
number = {7},
doi = {10.2140/gt.2018.22.4145},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4145/}
}
TY - JOUR AU - Balmer, Paul TI - Endotrivial representations of finite groups and equivariant line bundles on the Brown complex JO - Geometry & topology PY - 2018 SP - 4145 EP - 4161 VL - 22 IS - 7 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4145/ DO - 10.2140/gt.2018.22.4145 ID - 10_2140_gt_2018_22_4145 ER -
%0 Journal Article %A Balmer, Paul %T Endotrivial representations of finite groups and equivariant line bundles on the Brown complex %J Geometry & topology %D 2018 %P 4145-4161 %V 22 %N 7 %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4145/ %R 10.2140/gt.2018.22.4145 %F 10_2140_gt_2018_22_4145
Balmer, Paul. Endotrivial representations of finite groups and equivariant line bundles on the Brown complex. Geometry & topology, Tome 22 (2018) no. 7, pp. 4145-4161. doi: 10.2140/gt.2018.22.4145
[1] , Modular representations of finite groups with trivial restriction to Sylow subgroups, J. Eur. Math. Soc. 15 (2013) 2061 | DOI
[2] , Stacks of group representations, J. Eur. Math. Soc. 17 (2015) 189 | DOI
[3] , Homologie de certains ensembles ordonnés, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 49
[4] , Euler characteristics of groups : the p–fractional part, Invent. Math. 29 (1975) 1 | DOI
[5] , , , Endotrivial modules for the general linear group in a nondefining characteristic, Math. Z. 278 (2014) 901 | DOI
[6] , , The classification of endo-trivial modules, Invent. Math. 158 (2004) 389 | DOI
[7] , , The classification of torsion endo-trivial modules, Ann. of Math. 162 (2005) 823 | DOI
[8] , , The torsion group of endotrivial modules, Algebra Number Theory 9 (2015) 749 | DOI
[9] , , , Moment maps, cobordisms, and Hamiltonian group actions, 98, Amer. Math. Soc. (2002) | DOI
[10] , , Lifting compact group actions in fiber bundles, Japan. J. Math. 2 (1976) 13 | DOI
[11] , , Some remarks on a conjecture of Alperin, J. London Math. Soc. 39 (1989) 48 | DOI
[12] , Homotopy properties of the poset of nontrivial p–subgroups of a group, Adv. in Math. 28 (1978) 101 | DOI
[13] , Equivariant K–theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 129 | DOI
[14] , The orbit space of the p–subgroup complex is contractible, Comment. Math. Helv. 73 (1998) 400 | DOI
[15] , Equivariant K–theory and Alperin’s conjecture, J. Pure Appl. Algebra 85 (1993) 185 | DOI
[16] , , Homotopy equivalence of posets with a group action, J. Combin. Theory Ser. A 56 (1991) 173 | DOI
[17] , Subgroup complexes, from: "The Arcata conference on representations of finite groups" (editor P Fong), Proc. Sympos. Pure Math. 47, Amer. Math. Soc. (1987) 349
Cité par Sources :