The normal closure of big Dehn twists and plate spinning with rotating families
Geometry & topology, Tome 22 (2018) no. 7, pp. 4113-4144.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the normal closure of a big power of one or several Dehn twists in a mapping class group. We prove that it has a presentation whose relators consist only of commutators between twists of disjoint support, thus answering a question of Ivanov. Our method is to use the theory of projection complexes of Bestvina, Bromberg and Fujiwara, together with the theory of rotating families, simultaneously on several spaces.

DOI : 10.2140/gt.2018.22.4113
Classification : 20E07, 20F65
Keywords: Dehn twist, mapping class group, rotating families, projection complexes

Dahmani, François 1

1 Institut Fourier, Université Grenoble Alpes, Grenoble, France
@article{GT_2018_22_7_a6,
     author = {Dahmani, Fran\c{c}ois},
     title = {The normal closure of big {Dehn} twists and plate spinning with rotating families},
     journal = {Geometry & topology},
     pages = {4113--4144},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2018},
     doi = {10.2140/gt.2018.22.4113},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4113/}
}
TY  - JOUR
AU  - Dahmani, François
TI  - The normal closure of big Dehn twists and plate spinning with rotating families
JO  - Geometry & topology
PY  - 2018
SP  - 4113
EP  - 4144
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4113/
DO  - 10.2140/gt.2018.22.4113
ID  - GT_2018_22_7_a6
ER  - 
%0 Journal Article
%A Dahmani, François
%T The normal closure of big Dehn twists and plate spinning with rotating families
%J Geometry & topology
%D 2018
%P 4113-4144
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4113/
%R 10.2140/gt.2018.22.4113
%F GT_2018_22_7_a6
Dahmani, François. The normal closure of big Dehn twists and plate spinning with rotating families. Geometry & topology, Tome 22 (2018) no. 7, pp. 4113-4144. doi : 10.2140/gt.2018.22.4113. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4113/

[1] J A Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006) 1523 | DOI

[2] M Bestvina, K Bromberg, K Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015) 1 | DOI

[3] T Brendle, D Margalit, Normal subgroups of mapping class groups and the metaconjecture of Ivanov, preprint (2017)

[4] M Clay, C J Leininger, D Margalit, Abstract commensurators of right-angled Artin groups and mapping class groups, Math. Res. Lett. 21 (2014) 461 | DOI

[5] R B Coulon, Partial periodic quotients of groups acting on a hyperbolic space, Ann. Inst. Fourier (Grenoble) 66 (2016) 1773 | DOI

[6] F Dahmani, V Guirardel, D Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, 1156, Amer. Math. Soc. (2017) | DOI

[7] B Farb, Some problems on mapping class groups and moduli space, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 11 | DOI

[8] L Funar, On the TQFT representations of the mapping class groups, Pacific J. Math. 188 (1999) 251 | DOI

[9] M Handel, W P Thurston, New proofs of some results of Nielsen, Adv. in Math. 56 (1985) 173 | DOI

[10] S P Humphries, Normal closures of powers of Dehn twists in mapping class groups, Glasgow Math. J. 34 (1992) 313 | DOI

[11] N V Ivanov, Subgroups of Teichmüller modular groups, 115, Amer. Math. Soc. (1992)

[12] N V Ivanov, Fifteen problems about the mapping class groups, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 71 | DOI

[13] T Koberda, Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups, Geom. Funct. Anal. 22 (2012) 1541 | DOI

[14] J Mangahas, Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal. 19 (2010) 1468 | DOI

[15] J Mangahas, A recipe for short-word pseudo-Anosovs, Amer. J. Math. 135 (2013) 1087 | DOI

[16] G Masbaum, On powers of half-twists in M(0,2n), Glasg. Math. J. 60 (2018) 333 | DOI

[17] H A Masur, Y N Minsky, Geometry of the complex of curves, I : Hyperbolicity, Invent. Math. 138 (1999) 103 | DOI

[18] J Mccarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985) 583 | DOI

[19] C Stylianakis, The normal closure of a power of a half-twist has infinite index in the mapping class group of a punctured sphere, preprint (2015)

Cité par Sources :