Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a compact oriented three-manifold whose interior is hyperbolic of finite volume. We prove a variation formula for the volume on the variety of representations of in . Our proof follows the strategy of Reznikov’s rigidity when is closed; in particular, we use Fuks’s approach to variations by means of Lie algebra cohomology. When , we get Hodgson’s formula for variation of volume on the space of hyperbolic Dehn fillings. Our formula also recovers the variation of volume on the space of decorated triangulations obtained by Bergeron, Falbel and Guilloux and Dimofte, Gabella and Goncharov.
Pitsch, Wolfgang 1 ; Porti, Joan 1
@article{GT_2018_22_7_a5, author = {Pitsch, Wolfgang and Porti, Joan}, title = {Volumes of {SLn(\ensuremath{\mathbb{C}}){\textendash}representations} of hyperbolic 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {4067--4112}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.4067}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4067/} }
TY - JOUR AU - Pitsch, Wolfgang AU - Porti, Joan TI - Volumes of SLn(ℂ)–representations of hyperbolic 3–manifolds JO - Geometry & topology PY - 2018 SP - 4067 EP - 4112 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4067/ DO - 10.2140/gt.2018.22.4067 ID - GT_2018_22_7_a5 ER -
Pitsch, Wolfgang; Porti, Joan. Volumes of SLn(ℂ)–representations of hyperbolic 3–manifolds. Geometry & topology, Tome 22 (2018) no. 7, pp. 4067-4112. doi : 10.2140/gt.2018.22.4067. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4067/
[1] Tetrahedra of flags, volume and homology of SL(3), Geom. Topol. 18 (2014) 1911 | DOI
, , ,[2] Relative homology and Poincaré duality for group pairs, J. Pure Appl. Algebra 13 (1978) 277 | DOI
, ,[3] Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953) 115 | DOI
,[4] Continuous cohomology, discrete subgroups, and representations of reductive groups, 94, Princeton Univ. Press (1980)
, ,[5] Differential forms in algebraic topology, 82, Springer (1982) | DOI
, ,[6] A dual interpretation of the Gromov–Thurston proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices, from: "Trends in harmonic analysis" (editor M A Picardello), Springer INdAM Ser. 3, Springer (2013) 47 | DOI
, , ,[7] The bounded Borel class and complex representations of 3–manifold groups, preprint (2014)
, , ,[8] Bounded differential forms, generalized Milnor–Wood inequality and an application to deformation rigidity, Geom. Dedicata 125 (2007) 1 | DOI
, ,[9] Théorie des algèbres semi-simples, from: "Séminaire Sophus Lie 1954–55", École Normale Supérieure (1955)
,[10] K–decompositions and 3d gauge theories, J. High Energy Phys. (2016) | DOI
, , ,[11] Rationality of the SL(2, C)–Reidemeister torsion in dimension 3, Topology Proc. 47 (2016) 115
, ,[12] Cohomology of infinite-dimensional Lie algebras, Consultants Bureau (1986) | DOI
,[13] The complex volume of SL(n, C)–representations of 3–manifolds, Duke Math. J. 164 (2015) 2099 | DOI
, , ,[14] Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc. 12 (1999) 569 | DOI
,[15] Représentations et structures géométriques, habilitation, Université Pierre et Marie Curie (2015)
,[16] Cohomology of Lie groups, Illinois J. Math. 6 (1962) 367
, ,[17] Degeneration and regeneration of geometric structures on 3–manifolds, PhD thesis, Princeton University (1986)
,[18] On representation varieties of 3–manifold groups, Geom. Topol. 21 (2017) 1931 | DOI
, ,[19] The arithmetic of hyperbolic 3–manifolds, 219, Springer (2003) | DOI
, ,[20] Twisted cohomology for hyperbolic three manifolds, Osaka J. Math. 49 (2012) 741
, ,[21] Continuous bounded cohomology of locally compact groups, 1758, Springer (2001) | DOI
,[22] Stabilization for SLn in bounded cohomology, from: "Discrete geometric analysis" (editors M Kotani, T Shirai, T Sunada), Contemp. Math. 347, Amer. Math. Soc. (2004) 191 | DOI
,[23] Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 | DOI
, ,[24] Rationality of secondary classes, J. Differential Geom. 43 (1996) 674 | DOI
,[25] An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI
,[26] Remarks on and around bounded differential forms, Pure Appl. Math. Q. 8 (2012) 479 | DOI
,[27] The η–invariant of hyperbolic 3–manifolds, Invent. Math. 81 (1985) 473 | DOI
,Cité par Sources :