Volumes of SLn(ℂ)–representations of hyperbolic 3–manifolds
Geometry & topology, Tome 22 (2018) no. 7, pp. 4067-4112.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a compact oriented three-manifold whose interior is hyperbolic of finite volume. We prove a variation formula for the volume on the variety of representations of π1(M) in SLn(). Our proof follows the strategy of Reznikov’s rigidity when M is closed; in particular, we use Fuks’s approach to variations by means of Lie algebra cohomology. When n = 2, we get Hodgson’s formula for variation of volume on the space of hyperbolic Dehn fillings. Our formula also recovers the variation of volume on the space of decorated triangulations obtained by Bergeron, Falbel and Guilloux and Dimofte, Gabella and Goncharov.

DOI : 10.2140/gt.2018.22.4067
Classification : 14D20, 57M50, 57R20, 57T10
Keywords: volume, hyperbolic manifold, characteristic class, representation variety, Schäfli formula, flat bundle

Pitsch, Wolfgang 1 ; Porti, Joan 1

1 BGSMath and Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
@article{GT_2018_22_7_a5,
     author = {Pitsch, Wolfgang and Porti, Joan},
     title = {Volumes of {SLn(\ensuremath{\mathbb{C}}){\textendash}representations} of hyperbolic 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {4067--4112},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2018},
     doi = {10.2140/gt.2018.22.4067},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4067/}
}
TY  - JOUR
AU  - Pitsch, Wolfgang
AU  - Porti, Joan
TI  - Volumes of SLn(ℂ)–representations of hyperbolic 3–manifolds
JO  - Geometry & topology
PY  - 2018
SP  - 4067
EP  - 4112
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4067/
DO  - 10.2140/gt.2018.22.4067
ID  - GT_2018_22_7_a5
ER  - 
%0 Journal Article
%A Pitsch, Wolfgang
%A Porti, Joan
%T Volumes of SLn(ℂ)–representations of hyperbolic 3–manifolds
%J Geometry & topology
%D 2018
%P 4067-4112
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4067/
%R 10.2140/gt.2018.22.4067
%F GT_2018_22_7_a5
Pitsch, Wolfgang; Porti, Joan. Volumes of SLn(ℂ)–representations of hyperbolic 3–manifolds. Geometry & topology, Tome 22 (2018) no. 7, pp. 4067-4112. doi : 10.2140/gt.2018.22.4067. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.4067/

[1] N Bergeron, E Falbel, A Guilloux, Tetrahedra of flags, volume and homology of SL(3), Geom. Topol. 18 (2014) 1911 | DOI

[2] R Bieri, B Eckmann, Relative homology and Poincaré duality for group pairs, J. Pure Appl. Algebra 13 (1978) 277 | DOI

[3] A Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953) 115 | DOI

[4] A Borel, N R Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 94, Princeton Univ. Press (1980)

[5] R Bott, L W Tu, Differential forms in algebraic topology, 82, Springer (1982) | DOI

[6] M Bucher, M Burger, A Iozzi, A dual interpretation of the Gromov–Thurston proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices, from: "Trends in harmonic analysis" (editor M A Picardello), Springer INdAM Ser. 3, Springer (2013) 47 | DOI

[7] M Bucher, M Burger, A Iozzi, The bounded Borel class and complex representations of 3–manifold groups, preprint (2014)

[8] M Burger, A Iozzi, Bounded differential forms, generalized Milnor–Wood inequality and an application to deformation rigidity, Geom. Dedicata 125 (2007) 1 | DOI

[9] P Cartier, Théorie des algèbres semi-simples, from: "Séminaire Sophus Lie 1954–55", École Normale Supérieure (1955)

[10] T Dimofte, M Gabella, A B Goncharov, K–decompositions and 3d gauge theories, J. High Energy Phys. (2016) | DOI

[11] J Dubois, S Garoufalidis, Rationality of the SL(2, C)–Reidemeister torsion in dimension 3, Topology Proc. 47 (2016) 115

[12] D B Fuks, Cohomology of infinite-dimensional Lie algebras, Consultants Bureau (1986) | DOI

[13] S Garoufalidis, D P Thurston, C K Zickert, The complex volume of SL(n, C)–representations of 3–manifolds, Duke Math. J. 164 (2015) 2099 | DOI

[14] A Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc. 12 (1999) 569 | DOI

[15] A Guilloux, Représentations et structures géométriques, habilitation, Université Pierre et Marie Curie (2015)

[16] G Hochschild, G D Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962) 367

[17] C Hodgson, Degeneration and regeneration of geometric structures on 3–manifolds, PhD thesis, Princeton University (1986)

[18] M Kapovich, J J Millson, On representation varieties of 3–manifold groups, Geom. Topol. 21 (2017) 1931 | DOI

[19] C Maclachlan, A W Reid, The arithmetic of hyperbolic 3–manifolds, 219, Springer (2003) | DOI

[20] P Menal-Ferrer, J Porti, Twisted cohomology for hyperbolic three manifolds, Osaka J. Math. 49 (2012) 741

[21] N Monod, Continuous bounded cohomology of locally compact groups, 1758, Springer (2001) | DOI

[22] N Monod, Stabilization for SLn in bounded cohomology, from: "Discrete geometric analysis" (editors M Kotani, T Shirai, T Sunada), Contemp. Math. 347, Amer. Math. Soc. (2004) 191 | DOI

[23] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 | DOI

[24] A Reznikov, Rationality of secondary classes, J. Differential Geom. 43 (1996) 674 | DOI

[25] C A Weibel, An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI

[26] A Wienhard, Remarks on and around bounded differential forms, Pure Appl. Math. Q. 8 (2012) 479 | DOI

[27] T Yoshida, The η–invariant of hyperbolic 3–manifolds, Invent. Math. 81 (1985) 473 | DOI

Cité par Sources :