Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Even Artin groups generalize right-angled Artin groups by allowing the labels in the defining graph to be even. We give a complete characterization of quasi-projective even Artin groups in terms of their defining graphs. Also, we show that quasi-projective even Artin groups are realizable by quasi-projective spaces.
Blasco-García, Rubén 1 ; Cogolludo-Agustín, José 1
@article{GT_2018_22_7_a3, author = {Blasco-Garc{\'\i}a, Rub\'en and Cogolludo-Agust{\'\i}n, Jos\'e}, title = {Quasi-projectivity of even {Artin} groups}, journal = {Geometry & topology}, pages = {3979--4011}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.3979}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3979/} }
TY - JOUR AU - Blasco-García, Rubén AU - Cogolludo-Agustín, José TI - Quasi-projectivity of even Artin groups JO - Geometry & topology PY - 2018 SP - 3979 EP - 4011 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3979/ DO - 10.2140/gt.2018.22.3979 ID - GT_2018_22_7_a3 ER -
Blasco-García, Rubén; Cogolludo-Agustín, José. Quasi-projectivity of even Artin groups. Geometry & topology, Tome 22 (2018) no. 7, pp. 3979-4011. doi : 10.2140/gt.2018.22.3979. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3979/
[1] Geometry of cohomology support loci for local systems, I, J. Algebraic Geom. 6 (1997) 563
,[2] On the fundamental group of a compact Kähler manifold, Duke Math. J. 68 (1992) 477 | DOI
, , ,[3] Quasi-projectivity, Artin–Tits groups, and pencil maps, from: "Topology of algebraic varieties and singularities" (editors J I Cogolludo-Agustín, E Hironaka), Contemp. Math. 538, Amer. Math. Soc. (2011) 113 | DOI
, , ,[4] Characteristic varieties of quasi-projective manifolds and orbifolds, Geom. Topol. 17 (2013) 273 | DOI
, , ,[5] What annihilates a module?, J. Algebra 47 (1977) 231 | DOI
, ,[6] Fibred Kähler and quasi-projective groups, Adv. Geom. 3 (2003) | DOI
,[7] Topological invariants of the complement to arrangements of rational plane curves, 756, Amer. Math. Soc. (2002) | DOI
,[8] Homology of iterated semidirect products of free groups, J. Pure Appl. Algebra 126 (1998) 87 | DOI
, ,[9] Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999) 33 | DOI
, ,[10] On the irreducible components of characteristic varieties, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 15 (2007) 67
,[11] Alexander polynomials: essential variables and multiplicities, Int. Math. Res. Not. 2008 (2008) | DOI
, , ,[12] Topology and geometry of cohomology jump loci, Duke Math. J. 148 (2009) 405 | DOI
, , ,[13] Sulla costruzione delle funzioni algebriche di due variabili possedenti una data curva di diramazione, Ann. Mat. Pura Appl. 1 (1924) 185 | DOI
,[14] Free differential calculus, I : Derivation in the free group ring, Ann. of Math. 57 (1953) 547 | DOI
,[15] Free differential calculus, III : Subgroups, Ann. of Math. 64 (1956) 407 | DOI
,[16] Alexander ideals of links, 895, Springer (1981)
,[17] Alexander stratifications of character varieties, Ann. Inst. Fourier Grenoble 47 (1997) 555 | DOI
,[18] On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933) 255 | DOI
,[19] On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998) 5
, ,[20] Groups which cannot be realized as fundamental groups of the complements to hypersurfaces in CN, from: "Algebraic geometry and its applications" (editor C L Bajaj), Springer (1994) 203
,[21] Characteristic varieties of algebraic curves, from: "Applications of algebraic geometry to coding theory, physics and computation" (editors C Ciliberto, F Hirzebruch, R Miranda, M Teicher), NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer (2001) 215
,[22] The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978) 137
,[23] Product theorem of the fundamental group of a reducible curve, J. Math. Soc. Japan 30 (1978) 599 | DOI
, ,[24] Lectures on Artin groups and the K(π,1) conjecture, from: "Groups of exceptional type, Coxeter groups and related geometries" (editor N S N Sastry), Springer Proc. Math. Stat. 82, Springer (2014) 239 | DOI
,[25] On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929) 305 | DOI
,[26] Algebraic surfaces, 61, Springer (1971)
,Cité par Sources :