Quasi-projectivity of even Artin groups
Geometry & topology, Tome 22 (2018) no. 7, pp. 3979-4011.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Even Artin groups generalize right-angled Artin groups by allowing the labels in the defining graph to be even. We give a complete characterization of quasi-projective even Artin groups in terms of their defining graphs. Also, we show that quasi-projective even Artin groups are realizable by K(π,1) quasi-projective spaces.

DOI : 10.2140/gt.2018.22.3979
Classification : 14F45, 20F36, 14H30, 32S50, 57M05
Keywords: Artin groups, quasi-projective groups

Blasco-García, Rubén 1 ; Cogolludo-Agustín, José 1

1 Departamento de Matemáticas, IUMA, Universidad de Zaragoza, Zaragoza, Spain
@article{GT_2018_22_7_a3,
     author = {Blasco-Garc{\'\i}a, Rub\'en and Cogolludo-Agust{\'\i}n, Jos\'e},
     title = {Quasi-projectivity of even {Artin} groups},
     journal = {Geometry & topology},
     pages = {3979--4011},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2018},
     doi = {10.2140/gt.2018.22.3979},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3979/}
}
TY  - JOUR
AU  - Blasco-García, Rubén
AU  - Cogolludo-Agustín, José
TI  - Quasi-projectivity of even Artin groups
JO  - Geometry & topology
PY  - 2018
SP  - 3979
EP  - 4011
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3979/
DO  - 10.2140/gt.2018.22.3979
ID  - GT_2018_22_7_a3
ER  - 
%0 Journal Article
%A Blasco-García, Rubén
%A Cogolludo-Agustín, José
%T Quasi-projectivity of even Artin groups
%J Geometry & topology
%D 2018
%P 3979-4011
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3979/
%R 10.2140/gt.2018.22.3979
%F GT_2018_22_7_a3
Blasco-García, Rubén; Cogolludo-Agustín, José. Quasi-projectivity of even Artin groups. Geometry & topology, Tome 22 (2018) no. 7, pp. 3979-4011. doi : 10.2140/gt.2018.22.3979. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3979/

[1] D Arapura, Geometry of cohomology support loci for local systems, I, J. Algebraic Geom. 6 (1997) 563

[2] D Arapura, P Bressler, M Ramachandran, On the fundamental group of a compact Kähler manifold, Duke Math. J. 68 (1992) 477 | DOI

[3] E Artal Bartolo, J I Cogolludo-Agustín, D Matei, Quasi-projectivity, Artin–Tits groups, and pencil maps, from: "Topology of algebraic varieties and singularities" (editors J I Cogolludo-Agustín, E Hironaka), Contemp. Math. 538, Amer. Math. Soc. (2011) 113 | DOI

[4] E Artal Bartolo, J I Cogolludo-Agustín, D Matei, Characteristic varieties of quasi-projective manifolds and orbifolds, Geom. Topol. 17 (2013) 273 | DOI

[5] D A Buchsbaum, D Eisenbud, What annihilates a module?, J. Algebra 47 (1977) 231 | DOI

[6] F Catanese, Fibred Kähler and quasi-projective groups, Adv. Geom. 3 (2003) | DOI

[7] J I Cogolludo-Agustín, Topological invariants of the complement to arrangements of rational plane curves, 756, Amer. Math. Soc. (2002) | DOI

[8] D C Cohen, A I Suciu, Homology of iterated semidirect products of free groups, J. Pure Appl. Algebra 126 (1998) 87 | DOI

[9] D C Cohen, A I Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999) 33 | DOI

[10] A Dimca, On the irreducible components of characteristic varieties, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 15 (2007) 67

[11] A Dimca, Ş Papadima, A I Suciu, Alexander polynomials: essential variables and multiplicities, Int. Math. Res. Not. 2008 (2008) | DOI

[12] A Dimca, Ş Papadima, A I Suciu, Topology and geometry of cohomology jump loci, Duke Math. J. 148 (2009) 405 | DOI

[13] F Enriques, Sulla costruzione delle funzioni algebriche di due variabili possedenti una data curva di diramazione, Ann. Mat. Pura Appl. 1 (1924) 185 | DOI

[14] R H Fox, Free differential calculus, I : Derivation in the free group ring, Ann. of Math. 57 (1953) 547 | DOI

[15] R H Fox, Free differential calculus, III : Subgroups, Ann. of Math. 64 (1956) 407 | DOI

[16] J A Hillman, Alexander ideals of links, 895, Springer (1981)

[17] E Hironaka, Alexander stratifications of character varieties, Ann. Inst. Fourier Grenoble 47 (1997) 555 | DOI

[18] E R Van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933) 255 | DOI

[19] M Kapovich, J J Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998) 5

[20] A S Libgober, Groups which cannot be realized as fundamental groups of the complements to hypersurfaces in CN, from: "Algebraic geometry and its applications" (editor C L Bajaj), Springer (1994) 203

[21] A Libgober, Characteristic varieties of algebraic curves, from: "Applications of algebraic geometry to coding theory, physics and computation" (editors C Ciliberto, F Hirzebruch, R Miranda, M Teicher), NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer (2001) 215

[22] J W Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978) 137

[23] M Oka, K Sakamoto, Product theorem of the fundamental group of a reducible curve, J. Math. Soc. Japan 30 (1978) 599 | DOI

[24] L Paris, Lectures on Artin groups and the K(π,1) conjecture, from: "Groups of exceptional type, Coxeter groups and related geometries" (editor N S N Sastry), Springer Proc. Math. Stat. 82, Springer (2014) 239 | DOI

[25] O Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929) 305 | DOI

[26] O Zariski, Algebraic surfaces, 61, Springer (1971)

Cité par Sources :