Ricci flow from spaces with isolated conical singularities
Geometry & topology, Tome 22 (2018) no. 7, pp. 3925-3977.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let (M,g0) be a compact n–dimensional Riemannian manifold with a finite number of singular points, where the metric is asymptotic to a nonnegatively curved cone over (Sn1,g). We show that there exists a smooth Ricci flow starting from such a metric with curvature decaying like Ct. The initial metric is attained in Gromov–Hausdorff distance and smoothly away from the singular points. In the case that the initial manifold has isolated singularities asymptotic to a nonnegatively curved cone over (Sn1Γ,g), where Γ acts freely and properly discontinuously, we extend the above result by showing that starting from such an initial condition there exists a smooth Ricci flow with isolated orbifold singularities.

DOI : 10.2140/gt.2018.22.3925
Classification : 53C44, 58J47
Keywords: Ricci flow, singular initial data, conical singularities

Gianniotis, Panagiotis 1 ; Schulze, Felix 2

1 Department of Mathematics, University of Toronto, Toronto, ON, Canada
2 Department of Mathematics, University College London, London, United Kingdom
@article{GT_2018_22_7_a2,
     author = {Gianniotis, Panagiotis and Schulze, Felix},
     title = {Ricci flow from spaces with isolated conical singularities},
     journal = {Geometry & topology},
     pages = {3925--3977},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2018},
     doi = {10.2140/gt.2018.22.3925},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3925/}
}
TY  - JOUR
AU  - Gianniotis, Panagiotis
AU  - Schulze, Felix
TI  - Ricci flow from spaces with isolated conical singularities
JO  - Geometry & topology
PY  - 2018
SP  - 3925
EP  - 3977
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3925/
DO  - 10.2140/gt.2018.22.3925
ID  - GT_2018_22_7_a2
ER  - 
%0 Journal Article
%A Gianniotis, Panagiotis
%A Schulze, Felix
%T Ricci flow from spaces with isolated conical singularities
%J Geometry & topology
%D 2018
%P 3925-3977
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3925/
%R 10.2140/gt.2018.22.3925
%F GT_2018_22_7_a2
Gianniotis, Panagiotis; Schulze, Felix. Ricci flow from spaces with isolated conical singularities. Geometry & topology, Tome 22 (2018) no. 7, pp. 3925-3977. doi : 10.2140/gt.2018.22.3925. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3925/

[1] M Anderson, A Katsuda, Y Kurylev, M Lassas, M Taylor, Boundary regularity for the Ricci equation, geometric convergence, and Gelfand’s inverse boundary problem, Invent. Math. 158 (2004) 261 | DOI

[2] R H Bamler, Stability of hyperbolic manifolds with cusps under Ricci flow, Adv. Math. 263 (2014) 412 | DOI

[3] B L Chen, X P Zhu, Uniqueness of the Ricci flow on complete noncompact manifolds, J. Differential Geom. 74 (2006) 119 | DOI

[4] X Chen, Y Wang, Bessel functions, heat kernel and the conical Kähler–Ricci flow, J. Funct. Anal. 269 (2015) 551 | DOI

[5] B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow : techniques and applications, I : Geometric aspects, 135, Amer. Math. Soc. (2007)

[6] B Chow, P Lu, L Ni, Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) | DOI

[7] A Deruelle, Smoothing out positively curved metric cones by Ricci expanders, Geom. Funct. Anal. 26 (2016) 188 | DOI

[8] A Deruelle, Asymptotic estimates and compactness of expanding gradient Ricci solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 17 (2017) 485 | DOI

[9] A Deruelle, T Lamm, Weak stability of Ricci expanders with positive curvature operator, Math. Z. 286 (2017) 951 | DOI

[10] E Di Nezza, C H Lu, Uniqueness and short time regularity of the weak Kähler–Ricci flow, Adv. Math. 305 (2017) 953 | DOI

[11] J Enders, R Müller, P M Topping, On type-I singularities in Ricci flow, Comm. Anal. Geom. 19 (2011) 905 | DOI

[12] M Feldman, T Ilmanen, D Knopf, Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differential Geom. 65 (2003) 169 | DOI

[13] G Giesen, P M Topping, Existence of Ricci flows of incomplete surfaces, Comm. Partial Differential Equations 36 (2011) 1860 | DOI

[14] V Guedj, A Zeriahi, Regularizing properties of the twisted Kähler–Ricci flow, J. Reine Angew. Math. 729 (2017) 275 | DOI

[15] R S Hamilton, Harmonic maps of manifolds with boundary, 471, Springer (1975) | DOI

[16] R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255 | DOI

[17] B Kleiner, J Lott, Geometrization of three-dimensional orbifolds via Ricci flow, from: "Local collapsing, orbifolds, and geometrization", Astérisque 365, Soc. Math. France (2014) 101

[18] H Koch, T Lamm, Geometric flows with rough initial data, Asian J. Math. 16 (2012) 209 | DOI

[19] H Koch, T Lamm, Parabolic equations with rough data, Math. Bohem. 140 (2015) 457

[20] B L Kotschwar, Backwards uniqueness for the Ricci flow, Int. Math. Res. Not. 2010 (2010) 4064 | DOI

[21] N Lebedeva, V Matveev, A Petrunin, V Shevchishin, Smoothing 3–dimensional polyhedral spaces, Electron. Res. Announc. Math. Sci. 22 (2015) 12 | DOI

[22] P Lu, A compactness property for solutions of the Ricci flow on orbifolds, Amer. J. Math. 123 (2001) 1103 | DOI

[23] C Mantegazza, R Müller, Perelman’s entropy functional at Type I singularities of the Ricci flow, J. Reine Angew. Math. 703 (2015) 173 | DOI

[24] R Mazzeo, Y A Rubinstein, N Sesum, Ricci flow on surfaces with conic singularities, Anal. PDE 8 (2015) 839 | DOI

[25] O Munteanu, J Wang, Conical structure for shrinking Ricci solitons, J. Eur. Math. Soc. 19 (2017) 3377 | DOI

[26] A Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010) 125 | DOI

[27] G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002)

[28] W X Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989) 223 | DOI

[29] M Simon, Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math. 630 (2009) 177 | DOI

[30] M Simon, Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012) 59 | DOI

[31] M Simon, Ricci flow of regions with curvature bounded below in dimension three, J. Geom. Anal. 27 (2017) 3051 | DOI

[32] J Song, G Tian, The Kähler–Ricci flow through singularities, Invent. Math. 207 (2017) 519 | DOI

[33] P Topping, Ricci flow compactness via pseudolocality, and flows with incomplete initial metrics, J. Eur. Math. Soc. 12 (2010) 1429 | DOI

[34] P M Topping, Uniqueness of instantaneously complete Ricci flows, Geom. Topol. 19 (2015) 1477 | DOI

[35] B Vertman, Ricci de Turck flow on singular manifolds, preprint (2016)

[36] B Wang, Ricci flow on orbifold, preprint (2010)

[37] H Yin, Ricci flow on surfaces with conical singularities, J. Geom. Anal. 20 (2010) 970 | DOI

[38] H Yin, Ricci flow on surfaces with conical singularities, II, preprint (2013)

Cité par Sources :