Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a compact –dimensional Riemannian manifold with a finite number of singular points, where the metric is asymptotic to a nonnegatively curved cone over . We show that there exists a smooth Ricci flow starting from such a metric with curvature decaying like . The initial metric is attained in Gromov–Hausdorff distance and smoothly away from the singular points. In the case that the initial manifold has isolated singularities asymptotic to a nonnegatively curved cone over , where acts freely and properly discontinuously, we extend the above result by showing that starting from such an initial condition there exists a smooth Ricci flow with isolated orbifold singularities.
Gianniotis, Panagiotis 1 ; Schulze, Felix 2
@article{GT_2018_22_7_a2, author = {Gianniotis, Panagiotis and Schulze, Felix}, title = {Ricci flow from spaces with isolated conical singularities}, journal = {Geometry & topology}, pages = {3925--3977}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.3925}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3925/} }
TY - JOUR AU - Gianniotis, Panagiotis AU - Schulze, Felix TI - Ricci flow from spaces with isolated conical singularities JO - Geometry & topology PY - 2018 SP - 3925 EP - 3977 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3925/ DO - 10.2140/gt.2018.22.3925 ID - GT_2018_22_7_a2 ER -
%0 Journal Article %A Gianniotis, Panagiotis %A Schulze, Felix %T Ricci flow from spaces with isolated conical singularities %J Geometry & topology %D 2018 %P 3925-3977 %V 22 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3925/ %R 10.2140/gt.2018.22.3925 %F GT_2018_22_7_a2
Gianniotis, Panagiotis; Schulze, Felix. Ricci flow from spaces with isolated conical singularities. Geometry & topology, Tome 22 (2018) no. 7, pp. 3925-3977. doi : 10.2140/gt.2018.22.3925. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3925/
[1] Boundary regularity for the Ricci equation, geometric convergence, and Gelfand’s inverse boundary problem, Invent. Math. 158 (2004) 261 | DOI
, , , , ,[2] Stability of hyperbolic manifolds with cusps under Ricci flow, Adv. Math. 263 (2014) 412 | DOI
,[3] Uniqueness of the Ricci flow on complete noncompact manifolds, J. Differential Geom. 74 (2006) 119 | DOI
, ,[4] Bessel functions, heat kernel and the conical Kähler–Ricci flow, J. Funct. Anal. 269 (2015) 551 | DOI
, ,[5] The Ricci flow : techniques and applications, I : Geometric aspects, 135, Amer. Math. Soc. (2007)
, , , , , , , , , ,[6] Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) | DOI
, , ,[7] Smoothing out positively curved metric cones by Ricci expanders, Geom. Funct. Anal. 26 (2016) 188 | DOI
,[8] Asymptotic estimates and compactness of expanding gradient Ricci solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 17 (2017) 485 | DOI
,[9] Weak stability of Ricci expanders with positive curvature operator, Math. Z. 286 (2017) 951 | DOI
, ,[10] Uniqueness and short time regularity of the weak Kähler–Ricci flow, Adv. Math. 305 (2017) 953 | DOI
, ,[11] On type-I singularities in Ricci flow, Comm. Anal. Geom. 19 (2011) 905 | DOI
, , ,[12] Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons, J. Differential Geom. 65 (2003) 169 | DOI
, , ,[13] Existence of Ricci flows of incomplete surfaces, Comm. Partial Differential Equations 36 (2011) 1860 | DOI
, ,[14] Regularizing properties of the twisted Kähler–Ricci flow, J. Reine Angew. Math. 729 (2017) 275 | DOI
, ,[15] Harmonic maps of manifolds with boundary, 471, Springer (1975) | DOI
,[16] Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255 | DOI
,[17] Geometrization of three-dimensional orbifolds via Ricci flow, from: "Local collapsing, orbifolds, and geometrization", Astérisque 365, Soc. Math. France (2014) 101
, ,[18] Geometric flows with rough initial data, Asian J. Math. 16 (2012) 209 | DOI
, ,[19] Parabolic equations with rough data, Math. Bohem. 140 (2015) 457
, ,[20] Backwards uniqueness for the Ricci flow, Int. Math. Res. Not. 2010 (2010) 4064 | DOI
,[21] Smoothing 3–dimensional polyhedral spaces, Electron. Res. Announc. Math. Sci. 22 (2015) 12 | DOI
, , , ,[22] A compactness property for solutions of the Ricci flow on orbifolds, Amer. J. Math. 123 (2001) 1103 | DOI
,[23] Perelman’s entropy functional at Type I singularities of the Ricci flow, J. Reine Angew. Math. 703 (2015) 173 | DOI
, ,[24] Ricci flow on surfaces with conic singularities, Anal. PDE 8 (2015) 839 | DOI
, , ,[25] Conical structure for shrinking Ricci solitons, J. Eur. Math. Soc. 19 (2017) 3377 | DOI
, ,[26] Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010) 125 | DOI
,[27] The entropy formula for the Ricci flow and its geometric applications, preprint (2002)
,[28] Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989) 223 | DOI
,[29] Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math. 630 (2009) 177 | DOI
,[30] Ricci flow of non-collapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012) 59 | DOI
,[31] Ricci flow of regions with curvature bounded below in dimension three, J. Geom. Anal. 27 (2017) 3051 | DOI
,[32] The Kähler–Ricci flow through singularities, Invent. Math. 207 (2017) 519 | DOI
, ,[33] Ricci flow compactness via pseudolocality, and flows with incomplete initial metrics, J. Eur. Math. Soc. 12 (2010) 1429 | DOI
,[34] Uniqueness of instantaneously complete Ricci flows, Geom. Topol. 19 (2015) 1477 | DOI
,[35] Ricci de Turck flow on singular manifolds, preprint (2016)
,[36] Ricci flow on orbifold, preprint (2010)
,[37] Ricci flow on surfaces with conical singularities, J. Geom. Anal. 20 (2010) 970 | DOI
,[38] Ricci flow on surfaces with conical singularities, II, preprint (2013)
,Cité par Sources :