Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a Morse lemma for regular quasigeodesics in nonpositively curved symmetric spaces and euclidean buildings. We apply it to give a new coarse geometric characterization of Anosov subgroups of the isometry groups of such spaces simply as undistorted subgroups which are uniformly regular.
Kapovich, Michael 1 ; Leeb, Bernhard 2 ; Porti, Joan 3
@article{GT_2018_22_7_a1, author = {Kapovich, Michael and Leeb, Bernhard and Porti, Joan}, title = {A {Morse} lemma for quasigeodesics in symmetric spaces and euclidean buildings}, journal = {Geometry & topology}, pages = {3827--3923}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.3827}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3827/} }
TY - JOUR AU - Kapovich, Michael AU - Leeb, Bernhard AU - Porti, Joan TI - A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings JO - Geometry & topology PY - 2018 SP - 3827 EP - 3923 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3827/ DO - 10.2140/gt.2018.22.3827 ID - GT_2018_22_7_a1 ER -
%0 Journal Article %A Kapovich, Michael %A Leeb, Bernhard %A Porti, Joan %T A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings %J Geometry & topology %D 2018 %P 3827-3923 %V 22 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3827/ %R 10.2140/gt.2018.22.3827 %F GT_2018_22_7_a1
Kapovich, Michael; Leeb, Bernhard; Porti, Joan. A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings. Geometry & topology, Tome 22 (2018) no. 7, pp. 3827-3923. doi : 10.2140/gt.2018.22.3827. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3827/
[1] Lectures on spaces of nonpositive curvature, 25, Birkhäuser (1995) | DOI
,[2] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[3] A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI
, , ,[4] Geometric group theory, 63, Amer. Math. Soc. (2018)
, ,[5] Anosov representations and proper actions, Geom. Topol. 21 (2017) 485 | DOI
, , , ,[6] On asymptotic cones and quasi-isometry classes of fundamental groups of 3–manifolds, Geom. Funct. Anal. 5 (1995) 582 | DOI
, ,[7] Discrete isometry groups of symmetric spaces, lecture notes (2017)
, ,[8] Finsler bordifications of symmetric and certain locally symmetric spaces, Geom. Topol. 22 (2018) 2533 | DOI
, ,[9] Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differential Geom. 81 (2009) 297 | DOI
, , ,[10] Morse actions of discrete groups on symmetric space, preprint (2014)
, , ,[11] Some recent results on Anosov representations, Transform. Groups 21 (2016) 1105 | DOI
, , ,[12] Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017) 808 | DOI
, , ,[13] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 | DOI
, ,[14] Quasiflats in Hadamard spaces, Ann. Sci. École Norm. Sup. 30 (1997) 339 | DOI
, ,[15] Hyperbolic quasi-geodesics in CAT(0) spaces, Geom. Dedicata 169 (2014) 209 | DOI
,Cité par Sources :