A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings
Geometry & topology, Tome 22 (2018) no. 7, pp. 3827-3923.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a Morse lemma for regular quasigeodesics in nonpositively curved symmetric spaces and euclidean buildings. We apply it to give a new coarse geometric characterization of Anosov subgroups of the isometry groups of such spaces simply as undistorted subgroups which are uniformly regular.

DOI : 10.2140/gt.2018.22.3827
Classification : 53C35, 20F65, 51E24
Keywords: symmetric spaces, buildings, quasigeodesics

Kapovich, Michael 1 ; Leeb, Bernhard 2 ; Porti, Joan 3

1 Department of Mathematics, University of California, Davis, Davis, CA, United States
2 Mathematisches Institut, Universität München, München, Germany
3 Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
@article{GT_2018_22_7_a1,
     author = {Kapovich, Michael and Leeb, Bernhard and Porti, Joan},
     title = {A {Morse} lemma for quasigeodesics in symmetric spaces and euclidean buildings},
     journal = {Geometry & topology},
     pages = {3827--3923},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2018},
     doi = {10.2140/gt.2018.22.3827},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3827/}
}
TY  - JOUR
AU  - Kapovich, Michael
AU  - Leeb, Bernhard
AU  - Porti, Joan
TI  - A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings
JO  - Geometry & topology
PY  - 2018
SP  - 3827
EP  - 3923
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3827/
DO  - 10.2140/gt.2018.22.3827
ID  - GT_2018_22_7_a1
ER  - 
%0 Journal Article
%A Kapovich, Michael
%A Leeb, Bernhard
%A Porti, Joan
%T A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings
%J Geometry & topology
%D 2018
%P 3827-3923
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3827/
%R 10.2140/gt.2018.22.3827
%F GT_2018_22_7_a1
Kapovich, Michael; Leeb, Bernhard; Porti, Joan. A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings. Geometry & topology, Tome 22 (2018) no. 7, pp. 3827-3923. doi : 10.2140/gt.2018.22.3827. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3827/

[1] W Ballmann, Lectures on spaces of nonpositive curvature, 25, Birkhäuser (1995) | DOI

[2] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[3] D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI

[4] C Druţu, M Kapovich, Geometric group theory, 63, Amer. Math. Soc. (2018)

[5] F Guéritaud, O Guichard, F Kassel, A Wienhard, Anosov representations and proper actions, Geom. Topol. 21 (2017) 485 | DOI

[6] M Kapovich, B Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of 3–manifolds, Geom. Funct. Anal. 5 (1995) 582 | DOI

[7] M Kapovich, B Leeb, Discrete isometry groups of symmetric spaces, lecture notes (2017)

[8] M Kapovich, B Leeb, Finsler bordifications of symmetric and certain locally symmetric spaces, Geom. Topol. 22 (2018) 2533 | DOI

[9] M Kapovich, B Leeb, J Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differential Geom. 81 (2009) 297 | DOI

[10] M Kapovich, B Leeb, J Porti, Morse actions of discrete groups on symmetric space, preprint (2014)

[11] M Kapovich, B Leeb, J Porti, Some recent results on Anosov representations, Transform. Groups 21 (2016) 1105 | DOI

[12] M Kapovich, B Leeb, J Porti, Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017) 808 | DOI

[13] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 | DOI

[14] U Lang, V Schroeder, Quasiflats in Hadamard spaces, Ann. Sci. École Norm. Sup. 30 (1997) 339 | DOI

[15] H Sultan, Hyperbolic quasi-geodesics in CAT(0) spaces, Geom. Dedicata 169 (2014) 209 | DOI

Cité par Sources :