Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce a general theory of parametrized objects in the setting of –categories. Although parametrised spaces and spectra are the most familiar examples, we establish our theory in the generality of families of objects of a presentable –category parametrized over objects of an –topos. We obtain a coherent functor formalism describing the relationship of the various adjoint functors associated to base-change and symmetric monoidal structures.
Our main applications are to the study of generalized Thom spectra. We obtain fiberwise constructions of twisted Umkehr maps for twisted generalized cohomology theories using a geometric fiberwise construction of Atiyah duality. In order to characterize the algebraic structures on generalized Thom spectra and twisted (co)homology, we express the generalized Thom spectrum as a categorification of the well-known adjunction between units and group rings.
Ando, Matthew 1 ; Blumberg, Andrew 2 ; Gepner, David 3
@article{GT_2018_22_7_a0, author = {Ando, Matthew and Blumberg, Andrew and Gepner, David}, title = {Parametrized spectra, multiplicative {Thom} spectra and the twisted {Umkehr} map}, journal = {Geometry & topology}, pages = {3761--3825}, publisher = {mathdoc}, volume = {22}, number = {7}, year = {2018}, doi = {10.2140/gt.2018.22.3761}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3761/} }
TY - JOUR AU - Ando, Matthew AU - Blumberg, Andrew AU - Gepner, David TI - Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map JO - Geometry & topology PY - 2018 SP - 3761 EP - 3825 VL - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3761/ DO - 10.2140/gt.2018.22.3761 ID - GT_2018_22_7_a0 ER -
%0 Journal Article %A Ando, Matthew %A Blumberg, Andrew %A Gepner, David %T Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map %J Geometry & topology %D 2018 %P 3761-3825 %V 22 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3761/ %R 10.2140/gt.2018.22.3761 %F GT_2018_22_7_a0
Ando, Matthew; Blumberg, Andrew; Gepner, David. Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map. Geometry & topology, Tome 22 (2018) no. 7, pp. 3761-3825. doi : 10.2140/gt.2018.22.3761. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3761/
[1] The sigma orientation for analytic circle-equivariant elliptic cohomology, Geom. Topol. 7 (2003) 91 | DOI
,[2] Twists of K–theory and TMF, from: "Superstrings, geometry, topology, and –algebras" (editors R S Doran, G Friedman, J Rosenberg), Proc. Sympos. Pure Math. 81, Amer. Math. Soc. (2010) 27 | DOI
, , ,[3] Units of ring spectra and Thom spectra, preprint (2009)
, , , , ,[4] An ∞–categorical approach to R–line bundles, R–module Thom spectra, and twisted R–homology, J. Topol. 7 (2014) 869 | DOI
, , , , ,[5] Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory, J. Topol. 7 (2014) 1077 | DOI
, , , , ,[6] Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014) 1149 | DOI
, ,[7] Actions of K(π,n) spaces on K–theory and uniqueness of twisted K–theory, Trans. Amer. Math. Soc. 366 (2014) 3631 | DOI
, , ,[8] The index of elliptic operators, IV, Ann. of Math. 93 (1971) 119 | DOI
, ,[9] Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, II, 315, Soc. Math. France (2007)
,[10] Dualizing cartesian and cocartesian fibrations, Theory Appl. Categ. 33 (2018) 67
, , ,[11] Transfer maps for fibrations and duality, Compositio Math. 33 (1976) 107
, ,[12] A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007) 2043 | DOI
,[13] A survey of (∞,1)–categories, from: "Towards higher categories" (editors J C Baez, J P May), IMA Vol. Math. Appl. 152, Springer (2010) 69 | DOI
,[14] Topology and geometry, 139, Springer (1997) | DOI
,[15] Thom isomorphism and push-forward map in twisted K–theory, J. K–Theory 1 (2008) 357 | DOI
, ,[16] Triangulated categories of mixed motives, preprint (2009)
, ,[17] Grothendieck duality and base change, 1750, Springer (2000) | DOI
,[18] Twisted parametrized stable homotopy theory, preprint (2005)
,[19] Combinatorial model categories have presentations, Adv. Math. 164 (2001) 177 | DOI
,[20] Transfer maps for fibrations, Math. Proc. Cambridge Philos. Soc. 120 (1996) 221 | DOI
,[21] Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980) 267 | DOI
, ,[22] Isomorphisms between left and right adjoints, Theory Appl. Categ. 11 (2003) 107
, , ,[23] Relative quantum field theory, Comm. Math. Phys. 326 (2014) 459 | DOI
, ,[24] Anomalies in string theory with D–branes, Asian J. Math. 3 (1999) 819 | DOI
, ,[25] The elliptic Weyl character formula, Compos. Math. 150 (2014) 1196 | DOI
,[26] Universality of multiplicative infinite loop space machines, Algebr. Geom. Topol. 15 (2015) 3107 | DOI
, , ,[27] Univalence in locally cartesian closed ∞–categories, Forum Math. 29 (2017) 617 | DOI
, ,[28] Brauer groups and Galois cohomology of commutative ring spectra, preprint (2016)
, ,[29] Residues and duality, 20, Springer (1966) | DOI
,[30] Descente pour les n–champs, preprint (1998)
, ,[31] Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001) 63 | DOI
,[32] Duality for smooth families in equivariant stable homotopy theory, 285, Soc. Math. France (2003)
,[33] (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories, Adv. Math. 307 (2017) 147 | DOI
, ,[34] Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002) 207 | DOI
,[35] Equivariant stable homotopy theory, 1213, Springer (1986) | DOI
, , , ,[36] Higher topos theory, 170, Princeton Univ. Press (2009) | DOI
,[37] Higher algebra, book project (2012)
,[38] Equivariant orthogonal spectra and S–modules, 755, Amer. Math. Soc. (2002) | DOI
, ,[39] Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 | DOI
, , , ,[40] Picard groups, Grothendieck rings, and Burnside rings of categories, Adv. Math. 163 (2001) 1 | DOI
,[41] Parametrized homotopy theory, 132, Amer. Math. Soc. (2006) | DOI
, ,[42] Characteristic classes, 76, Princeton Univ. Press (1974)
, ,[43] K–theory and Ramond–Ramond charge, J. High Energy Phys. (1997) | DOI
, ,[44] A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973 | DOI
,[45] Equivariant elliptic cohomology and rigidity, Amer. J. Math. 123 (2001) 647 | DOI
,[46] Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 | DOI
, ,[47] On non-strict notions of n–category and n–groupoid via multisimplicial sets, preprint (1995)
,[48] Lectures on cross functors, preprint (2001)
,[49] Geometric cycles, index theory and twisted K–homology, J. Noncommut. Geom. 2 (2008) 497 | DOI
,[50] A higher chromatic analogue of the image of J, Geom. Topol. 21 (2017) 1033 | DOI
,[51] Chern–Simons gauge theory as a string theory, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 637 | DOI
,[52] D–branes and K–theory, J. High Energy Phys. (1998) | DOI
,Cité par Sources :