Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that any “finite-type” component of a stability space of a triangulated category is contractible. The motivating example of such a component is the stability space of the Calabi–Yau– category associated to an ADE Dynkin quiver. In addition to showing that this is contractible we prove that the braid group acts freely upon it by spherical twists, in particular that the spherical twist group is isomorphic to . This generalises the result of Brav–Thomas for the case. Other classes of triangulated categories with finite-type components in their stability spaces include locally finite triangulated categories with finite-rank Grothendieck group and discrete derived categories of finite global dimension.
Qiu, Yu 1 ; Woolf, Jon 2
@article{GT_2018_22_6_a11, author = {Qiu, Yu and Woolf, Jon}, title = {Contractible stability spaces and faithful braid group actions}, journal = {Geometry & topology}, pages = {3701--3760}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2018}, doi = {10.2140/gt.2018.22.3701}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3701/} }
TY - JOUR AU - Qiu, Yu AU - Woolf, Jon TI - Contractible stability spaces and faithful braid group actions JO - Geometry & topology PY - 2018 SP - 3701 EP - 3760 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3701/ DO - 10.2140/gt.2018.22.3701 ID - GT_2018_22_6_a11 ER -
Qiu, Yu; Woolf, Jon. Contractible stability spaces and faithful braid group actions. Geometry & topology, Tome 22 (2018) no. 6, pp. 3701-3760. doi : 10.2140/gt.2018.22.3701. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3701/
[1] Silting-discrete triangulated categories and contractible stability spaces, preprint (2017)
, , ,[2] Silting mutation in triangulated categories, J. Lond. Math. Soc. 85 (2012) 633 | DOI
, ,[3] On the structure of triangulated categories with finitely many indecomposables, Bull. Soc. Math. France 135 (2007) 435 | DOI
,[4] Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier Grenoble 59 (2009) 2525 | DOI
,[5] Representation theory of Artin algebras, II, Comm. Algebra 1 (1974) 269 | DOI
,[6] Homological and homotopical aspects of torsion theories, 883, Amer. Math. Soc. (2007) | DOI
, ,[7] Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5
, , ,[8] On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. 97 (1973) 424 | DOI
, ,[9] Classification of discrete derived categories, Cent. Eur. J. Math. 2 (2004) 19 | DOI
, , ,[10] Operations on t-structures and perverse coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013) 5
,[11] Braid groups and Kleinian singularities, Math. Ann. 351 (2011) 1005 | DOI
, ,[12] Stability conditions on triangulated categories, Ann. of Math. 166 (2007) 317 | DOI
,[13] Stability conditions on K3 surfaces, Duke Math. J. 141 (2008) 241 | DOI
,[14] Stability conditions and Kleinian singularities, Int. Math. Res. Not. 2009 (2009) 4142 | DOI
,[15] Stability conditions and the A2 quiver, preprint (2014)
, , ,[16] Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015) 155 | DOI
, ,[17] Averaging t-structures and extension closure of aisles, J. Algebra 394 (2013) 51 | DOI
, , ,[18] Discrete derived categories, II : The silting pairs CW complex and the stability manifold, J. Lond. Math. Soc. 93 (2016) 273 | DOI
, , ,[19] Discrete derived categories, I : Homomorphisms, autoequivalences and t-structures, Math. Z. 285 (2017) 39 | DOI
, , ,[20] Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273 | DOI
,[21] Dynamical systems and categories, from: "The influence of Solomon Lefschetz in geometry and topology" (editors L Katzarkov, E Lupercio, F J Turrubiates), Contemp. Math. 621, Amer. Math. Soc. (2014) 133 | DOI
, , , ,[22] Bridgeland stability conditions on the acyclic triangular quiver, Adv. Math. 288 (2016) 825 | DOI
, ,[23] Totally normal cellular stratified spaces and applications to the configuration space of graphs, Topol. Methods Nonlinear Anal. 45 (2015) 169 | DOI
, , ,[24] The Krull–Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences, Manuscripta Math. 54 (1985) 83 | DOI
,[25] Tilting in abelian categories and quasitilted algebras, 575, Amer. Math. Soc. (1996) | DOI
, , ,[26] Stability conditions on CY N categories associated to An–quivers and period maps, Math. Ann. 367 (2017) 1 | DOI
,[27] Stability conditions on An–singularities, J. Differential Geom. 84 (2010) 87 | DOI
, , ,[28] Sheaves on manifolds, 292, Springer (1994)
, ,[29] On cluster theory and quantum dilogarithm identities, from: "Representations of algebras and related topics" (editors A Skowroński, K Yamagata), Eur. Math. Soc. (2011) 85 | DOI
,[30] Cluster algebras and derived categories, from: "Derived categories in algebraic geometry" (editor Y Kawamata), Eur. Math. Soc. (2012) 123
,[31] Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988) 239
, ,[32] Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002) 203 | DOI
, ,[33] Exchange graphs and Ext quivers, Adv. Math. 285 (2015) 1106 | DOI
, ,[34] A class of Garside groupoid structures on the pure braid group, Trans. Amer. Math. Soc. 360 (2008) 4029 | DOI
,[35] Report on locally finite triangulated categories, J. K–Theory 9 (2012) 421 | DOI
,[36] Cohomological length functions, Nagoya Math. J. 223 (2016) 136 | DOI
,[37] Stability conditions on curves, Math. Res. Lett. 14 (2007) 657 | DOI
,[38] Stability manifold of P1, J. Algebraic Geom. 15 (2006) 487 | DOI
,[39] Groupe de monodromie géométrique des singularités simples, Math. Ann. 306 (1996) 231 | DOI
, ,[40] C–sortable words as green mutation sequences, Proc. Lond. Math. Soc. 111 (2015) 1052 | DOI
,[41] Stability conditions and quantum dilogarithm identities for Dynkin quivers, Adv. Math. 269 (2015) 220 | DOI
,[42] Decorated marked surfaces: spherical twists versus braid twists, Math. Ann. 365 (2016) 595 | DOI
,[43] Higher algebraic K–theory, I, from: "Algebraic –theory, I : Higher –theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85
,[44] Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002) 295 | DOI
, ,[45] Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001) 37
, ,[46] Invariants of t-structures and classification of nullity classes, Adv. Math. 224 (2010) 2662 | DOI
,[47] The modular curve as the space of stability conditions of a CY3 algebra, preprint (2011)
,[48] Stability conditions and the braid group, Comm. Anal. Geom. 14 (2006) 135
,[49] The algebras with discrete derived category, J. Algebra 243 (2001) 168 | DOI
,[50] Artin groups and geometric monodromy, Invent. Math. 138 (1999) 563 | DOI
,[51] Stability conditions, torsion theories and tilting, J. Lond. Math. Soc. 82 (2010) 663 | DOI
,[52] Some metric properties of spaces of stability conditions, Bull. Lond. Math. Soc. 44 (2012) 1274 | DOI
,[53] Locally finite triangulated categories, J. Algebra 290 (2005) 473 | DOI
, ,Cité par Sources :