C∗–algebraic higher signatures and an invariance theorem in codimension two
Geometry & topology, Tome 22 (2018) no. 6, pp. 3671-3699.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We revisit the construction of signature classes in C –algebra K–theory, and develop a variation that allows us to prove equality of signature classes in some situations involving homotopy equivalences of noncompact manifolds that are only defined outside a compact set. As an application, we prove a counterpart for signature classes of a codimension-two vanishing theorem for the index of the Dirac operator on spin manifolds (the latter is due to Hanke, Pape and Schick, and is a development of well-known work of Gromov and Lawson).

DOI : 10.2140/gt.2018.22.3671
Classification : 19K56, 57R19
Keywords: $K$–theory, $C^*$–algebraic signature, partitioned manifold theorem, eventual homotopy equivalence

Higson, Nigel 1 ; Schick, Thomas 2 ; Xie, Zhizhang 3

1 Department of Mathematics, Pennsylvania State University, University Park, PA, United States
2 Mathematisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
3 Department of Mathematics, Texas A&M University, College Station, TX, United States
@article{GT_2018_22_6_a10,
     author = {Higson, Nigel and Schick, Thomas and Xie, Zhizhang},
     title = {C\ensuremath{*}{\textendash}algebraic higher signatures and an invariance theorem in codimension two},
     journal = {Geometry & topology},
     pages = {3671--3699},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2018},
     doi = {10.2140/gt.2018.22.3671},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3671/}
}
TY  - JOUR
AU  - Higson, Nigel
AU  - Schick, Thomas
AU  - Xie, Zhizhang
TI  - C∗–algebraic higher signatures and an invariance theorem in codimension two
JO  - Geometry & topology
PY  - 2018
SP  - 3671
EP  - 3699
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3671/
DO  - 10.2140/gt.2018.22.3671
ID  - GT_2018_22_6_a10
ER  - 
%0 Journal Article
%A Higson, Nigel
%A Schick, Thomas
%A Xie, Zhizhang
%T C∗–algebraic higher signatures and an invariance theorem in codimension two
%J Geometry & topology
%D 2018
%P 3671-3699
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3671/
%R 10.2140/gt.2018.22.3671
%F GT_2018_22_6_a10
Higson, Nigel; Schick, Thomas; Xie, Zhizhang. C∗–algebraic higher signatures and an invariance theorem in codimension two. Geometry & topology, Tome 22 (2018) no. 6, pp. 3671-3699. doi : 10.2140/gt.2018.22.3671. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3671/

[1] O Attie, Quasi-isometry classification of some manifolds of bounded geometry, Math. Z. 216 (1994) 501 | DOI

[2] P Baum, A Connes, N Higson, Classifying space for proper actions and K–theory of group C∗–algebras, from: "–algebras : 1943–1993" (editor R S Doran), Contemp. Math. 167, Amer. Math. Soc. (1994) 240 | DOI

[3] J Chabert, Baum–Connes conjecture for some semi-direct products, J. Reine Angew. Math. 521 (2000) 161 | DOI

[4] G Gong, Q Wang, G Yu, Geometrization of the strong Novikov conjecture for residually finite groups, J. Reine Angew. Math. 621 (2008) 159 | DOI

[5] M Gromov, H B Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983) 83 | DOI

[6] E Guentner, N Higson, S Weinberger, The Novikov conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci. 101 (2005) 243 | DOI

[7] B Hanke, D Pape, T Schick, Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier Grenoble 65 (2015) 2681 | DOI

[8] N Higson, A note on the cobordism invariance of the index, Topology 30 (1991) 439 | DOI

[9] N Higson, J Roe, Mapping surgery to analysis, I : Analytic signatures, K–Theory 33 (2005) 277 | DOI

[10] N Higson, J Roe, Mapping surgery to analysis, II : Geometric signatures, K–Theory 33 (2005) 301 | DOI

[11] N Higson, J Roe, Mapping surgery to analysis, III : Exact sequences, K–Theory 33 (2005) 325 | DOI

[12] N Higson, J Roe, G Yu, A coarse Mayer–Vietoris principle, Math. Proc. Cambridge Philos. Soc. 114 (1993) 85 | DOI

[13] M Hilsum, G Skandalis, Invariance par homotopie de la signature à coefficients dans un fibré presque plat, J. Reine Angew. Math. 423 (1992) 73 | DOI

[14] G G Kasparov, Equivariant K“K–theory and the Novikov conjecture, Invent. Math. 91 (1988) 147 | DOI

[15] G G Kasparov, K–theory, group C∗–algebras, and higher signatures (conspectus), from: "Novikov conjectures, index theorems and rigidity, I" (editors S C Ferry, A Ranicki, J Rosenberg), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 101 | DOI

[16] M Land, T Nikolaus, On the relation between K– and L–theory of C∗–algebras, Math. Ann. 371 (2018) 517 | DOI

[17] A S Miščenko, Infinite-dimensional representations of discrete groups, and higher signatures, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 81

[18] S P Novikov, Algebraic construction and properties of Hermitian analogs of K–theory over rings with involution from the viewpoint of Hamiltonian formalism : applications to differential topology and the theory of characteristic classes, I, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 253

[19] S P Novikov, Algebraic construction and properties of Hermitian analogs of K–theory over rings with involution from the viewpoint of Hamiltonian formalism : applications to differential topology and the theory of characteristic classes, II, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 475

[20] P Piazza, T Schick, The surgery exact sequence, K–theory and the signature operator, Ann. K–Theory 1 (2016) 109 | DOI

[21] J Roe, Partitioning noncompact manifolds and the dual Toeplitz problem, from: "Operator algebras and applications, I" (editors D E Evans, M Takesaki), London Math. Soc. Lecture Note Ser. 135, Cambridge Univ. Press (1988) 187 | DOI

[22] J Roe, Coarse cohomology and index theory on complete Riemannian manifolds, 497, Amer. Math. Soc. (1993) | DOI

[23] J Roe, Index theory, coarse geometry, and topology of manifolds, 90, Amer. Math. Soc. (1996) | DOI

[24] J Rosenberg, Analytic Novikov for topologists, from: "Novikov conjectures, index theorems and rigidity, I" (editors S C Ferry, A Ranicki, J Rosenberg), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 338 | DOI

[25] J Rosenberg, Novikov’s conjecture, from: "Open problems in mathematics" (editors J F Nash Jr., M T Rassias), Springer (2016) 377 | DOI

[26] T Schick, M E Zadeh, Large scale index of multi-partitioned manifolds, J. Noncommut. Geom. 12 (2018) 439 | DOI

[27] C Wahl, Higher ρ–invariants and the surgery structure set, J. Topol. 6 (2013) 154 | DOI

[28] C T C Wall, Surgery on compact manifolds, 69, Amer. Math. Soc. (1999) | DOI

[29] G Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. 147 (1998) 325 | DOI

[30] M E Zadeh, Index theory and partitioning by enlargeable hypersurfaces, J. Noncommut. Geom. 4 (2010) 459 | DOI

Cité par Sources :