Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We revisit the construction of signature classes in –algebra –theory, and develop a variation that allows us to prove equality of signature classes in some situations involving homotopy equivalences of noncompact manifolds that are only defined outside a compact set. As an application, we prove a counterpart for signature classes of a codimension-two vanishing theorem for the index of the Dirac operator on spin manifolds (the latter is due to Hanke, Pape and Schick, and is a development of well-known work of Gromov and Lawson).
Higson, Nigel 1 ; Schick, Thomas 2 ; Xie, Zhizhang 3
@article{GT_2018_22_6_a10, author = {Higson, Nigel and Schick, Thomas and Xie, Zhizhang}, title = {C\ensuremath{*}{\textendash}algebraic higher signatures and an invariance theorem in codimension two}, journal = {Geometry & topology}, pages = {3671--3699}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2018}, doi = {10.2140/gt.2018.22.3671}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3671/} }
TY - JOUR AU - Higson, Nigel AU - Schick, Thomas AU - Xie, Zhizhang TI - C∗–algebraic higher signatures and an invariance theorem in codimension two JO - Geometry & topology PY - 2018 SP - 3671 EP - 3699 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3671/ DO - 10.2140/gt.2018.22.3671 ID - GT_2018_22_6_a10 ER -
%0 Journal Article %A Higson, Nigel %A Schick, Thomas %A Xie, Zhizhang %T C∗–algebraic higher signatures and an invariance theorem in codimension two %J Geometry & topology %D 2018 %P 3671-3699 %V 22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3671/ %R 10.2140/gt.2018.22.3671 %F GT_2018_22_6_a10
Higson, Nigel; Schick, Thomas; Xie, Zhizhang. C∗–algebraic higher signatures and an invariance theorem in codimension two. Geometry & topology, Tome 22 (2018) no. 6, pp. 3671-3699. doi : 10.2140/gt.2018.22.3671. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3671/
[1] Quasi-isometry classification of some manifolds of bounded geometry, Math. Z. 216 (1994) 501 | DOI
,[2] Classifying space for proper actions and K–theory of group C∗–algebras, from: "–algebras : 1943–1993" (editor R S Doran), Contemp. Math. 167, Amer. Math. Soc. (1994) 240 | DOI
, , ,[3] Baum–Connes conjecture for some semi-direct products, J. Reine Angew. Math. 521 (2000) 161 | DOI
,[4] Geometrization of the strong Novikov conjecture for residually finite groups, J. Reine Angew. Math. 621 (2008) 159 | DOI
, , ,[5] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983) 83 | DOI
, ,[6] The Novikov conjecture for linear groups, Publ. Math. Inst. Hautes Études Sci. 101 (2005) 243 | DOI
, , ,[7] Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier Grenoble 65 (2015) 2681 | DOI
, , ,[8] A note on the cobordism invariance of the index, Topology 30 (1991) 439 | DOI
,[9] Mapping surgery to analysis, I : Analytic signatures, K–Theory 33 (2005) 277 | DOI
, ,[10] Mapping surgery to analysis, II : Geometric signatures, K–Theory 33 (2005) 301 | DOI
, ,[11] Mapping surgery to analysis, III : Exact sequences, K–Theory 33 (2005) 325 | DOI
, ,[12] A coarse Mayer–Vietoris principle, Math. Proc. Cambridge Philos. Soc. 114 (1993) 85 | DOI
, , ,[13] Invariance par homotopie de la signature à coefficients dans un fibré presque plat, J. Reine Angew. Math. 423 (1992) 73 | DOI
, ,[14] Equivariant K“K–theory and the Novikov conjecture, Invent. Math. 91 (1988) 147 | DOI
,[15] K–theory, group C∗–algebras, and higher signatures (conspectus), from: "Novikov conjectures, index theorems and rigidity, I" (editors S C Ferry, A Ranicki, J Rosenberg), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 101 | DOI
,[16] On the relation between K– and L–theory of C∗–algebras, Math. Ann. 371 (2018) 517 | DOI
, ,[17] Infinite-dimensional representations of discrete groups, and higher signatures, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 81
,[18] Algebraic construction and properties of Hermitian analogs of K–theory over rings with involution from the viewpoint of Hamiltonian formalism : applications to differential topology and the theory of characteristic classes, I, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 253
,[19] Algebraic construction and properties of Hermitian analogs of K–theory over rings with involution from the viewpoint of Hamiltonian formalism : applications to differential topology and the theory of characteristic classes, II, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 475
,[20] The surgery exact sequence, K–theory and the signature operator, Ann. K–Theory 1 (2016) 109 | DOI
, ,[21] Partitioning noncompact manifolds and the dual Toeplitz problem, from: "Operator algebras and applications, I" (editors D E Evans, M Takesaki), London Math. Soc. Lecture Note Ser. 135, Cambridge Univ. Press (1988) 187 | DOI
,[22] Coarse cohomology and index theory on complete Riemannian manifolds, 497, Amer. Math. Soc. (1993) | DOI
,[23] Index theory, coarse geometry, and topology of manifolds, 90, Amer. Math. Soc. (1996) | DOI
,[24] Analytic Novikov for topologists, from: "Novikov conjectures, index theorems and rigidity, I" (editors S C Ferry, A Ranicki, J Rosenberg), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 338 | DOI
,[25] Novikov’s conjecture, from: "Open problems in mathematics" (editors J F Nash Jr., M T Rassias), Springer (2016) 377 | DOI
,[26] Large scale index of multi-partitioned manifolds, J. Noncommut. Geom. 12 (2018) 439 | DOI
, ,[27] Higher ρ–invariants and the surgery structure set, J. Topol. 6 (2013) 154 | DOI
,[28] Surgery on compact manifolds, 69, Amer. Math. Soc. (1999) | DOI
,[29] The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. 147 (1998) 325 | DOI
,[30] Index theory and partitioning by enlargeable hypersurfaces, J. Noncommut. Geom. 4 (2010) 459 | DOI
,Cité par Sources :