Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define a new formal Riemannian metric on a conformal classes of four-manifolds in the context of the –Yamabe problem. Exploiting this new variational structure we show that solutions are unique unless the manifold is conformally equivalent to the round sphere.
Gursky, Matthew 1 ; Streets, Jeffrey 2
@article{GT_2018_22_6_a7, author = {Gursky, Matthew and Streets, Jeffrey}, title = {A formal {Riemannian} structure on conformal classes and uniqueness for the {\ensuremath{\sigma}2{\textendash}Yamabe} problem}, journal = {Geometry & topology}, pages = {3501--3573}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2018}, doi = {10.2140/gt.2018.22.3501}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3501/} }
TY - JOUR AU - Gursky, Matthew AU - Streets, Jeffrey TI - A formal Riemannian structure on conformal classes and uniqueness for the σ2–Yamabe problem JO - Geometry & topology PY - 2018 SP - 3501 EP - 3573 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3501/ DO - 10.2140/gt.2018.22.3501 ID - GT_2018_22_6_a7 ER -
%0 Journal Article %A Gursky, Matthew %A Streets, Jeffrey %T A formal Riemannian structure on conformal classes and uniqueness for the σ2–Yamabe problem %J Geometry & topology %D 2018 %P 3501-3573 %V 22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3501/ %R 10.2140/gt.2018.22.3501 %F GT_2018_22_6_a7
Gursky, Matthew; Streets, Jeffrey. A formal Riemannian structure on conformal classes and uniqueness for the σ2–Yamabe problem. Geometry & topology, Tome 22 (2018) no. 6, pp. 3501-3573. doi : 10.2140/gt.2018.22.3501. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3501/
[1] On geodesics in the space of Kähler metrics, from: "Advances in geometric analysis" (editors S Janeczko, J Li, D H Phong), Adv. Lect. Math. 21, International (2012) 3
,[2] Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008) 951 | DOI
,[3] Blow-up phenomena for the Yamabe equation, II, J. Differential Geom. 81 (2009) 225 | DOI
, ,[4] A variational characterization for σn∕2, Calc. Var. Partial Differential Equations 20 (2004) 399 | DOI
, ,[5] The space of Kähler metrics, II, J. Differential Geom. 61 (2002) 173 | DOI
, ,[6] An a priori estimate for a fully nonlinear equation on four-manifolds, J. Anal. Math. 87 (2002) 151 | DOI
, , ,[7] An equation of Monge–Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. 155 (2002) 709 | DOI
, , ,[8] The inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math. 56 (2003) 1135 | DOI
, ,[9] The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 | DOI
,[10] Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. 107 (2008) 1 | DOI
, ,[11] Hamilton’s Ricci flow, 77, Science (2006) | DOI
, , ,[12] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 | DOI
,[13] Conjectures in Kähler geometry, from: "Strings and geometry" (editors M Douglas, J Gauntlett, M Gross), Clay Math. Proc. 3, Amer. Math. Soc. (2004) 71
,[14] Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982) 333 | DOI
,[15] An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959) 957
,[16] Elliptic partial differential equations of second order, 224, Springer (1977) | DOI
, ,[17] The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function, Comm. Anal. Geom. 6 (1998) 687 | DOI
,[18] Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc. 355 (2003) 925 | DOI
, , ,[19] A fully nonlinear conformal flow on locally conformally flat manifolds, J. Reine Angew. Math. 557 (2003) 219 | DOI
, ,[20] A formal Riemannian structure on conformal classes and the inverse Gauss curvature flow, preprint (2015)
, ,[21] Variational structure of the vk–Yamabe problem, preprint (2016)
, ,[22] The Gursky–Streets equations, preprint (2017)
,[23] Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983) 75
,[24] The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987) 37 | DOI
, ,[25] Transformations conformes et quasiconformes des variétés riemanniennes ; application à la démonstration d’une conjecture de A Lichnerowicz, C. R. Acad. Sci. Paris Sér. A-B 269 (1969)
,[26] K–energy maps integrating Futaki invariants, Tohoku Math. J. 38 (1986) 575 | DOI
,[27] Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math. 24 (1987) 227
,[28] Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962) 333 | DOI
,[29] Nonuniqueness and high energy solutions for a conformally invariant scalar equation, Comm. Anal. Geom. 1 (1993) 347 | DOI
,[30] Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973) 465 | DOI
,[31] Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, from: "Topics in calculus of variations" (editor M Giaquinta), Lecture Notes in Math. 1365, Springer (1989) 120 | DOI
,[32] Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 | DOI
,[33] The k–Yamabe problem, from: "Surveys in differential geometry" (editors H D Cao, S T Yau), International (2012) 427 | DOI
, , ,[34] Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J. 101 (2000) 283 | DOI
,[35] Conformally invariant Monge–Ampère equations : global solutions, Trans. Amer. Math. Soc. 352 (2000) 4371 | DOI
,[36] Estimates and existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom. 10 (2002) 815 | DOI
,[37] Conformal geometry and fully nonlinear equations, from: "Inspired by S S Chern" (editor P A Griffiths), Nankai Tracts Math. 11, World Sci. (2006) 435 | DOI
,Cité par Sources :