A formal Riemannian structure on conformal classes and uniqueness for the σ2–Yamabe problem
Geometry & topology, Tome 22 (2018) no. 6, pp. 3501-3573.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a new formal Riemannian metric on a conformal classes of four-manifolds in the context of the σ2–Yamabe problem. Exploiting this new variational structure we show that solutions are unique unless the manifold is conformally equivalent to the round sphere.

DOI : 10.2140/gt.2018.22.3501
Classification : 58J05, 53C44, 58B20
Keywords: fully nonlinear Yamabe problem, uniqueness

Gursky, Matthew 1 ; Streets, Jeffrey 2

1 Department of Mathematics, University of Notre Dame, Notre Dame, IN, United States
2 Department of Mathematics, University of California, Irvine, Irvine, CA, United States
@article{GT_2018_22_6_a7,
     author = {Gursky, Matthew and Streets, Jeffrey},
     title = {A formal {Riemannian} structure on conformal classes and uniqueness for the {\ensuremath{\sigma}2{\textendash}Yamabe} problem},
     journal = {Geometry & topology},
     pages = {3501--3573},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2018},
     doi = {10.2140/gt.2018.22.3501},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3501/}
}
TY  - JOUR
AU  - Gursky, Matthew
AU  - Streets, Jeffrey
TI  - A formal Riemannian structure on conformal classes and uniqueness for the σ2–Yamabe problem
JO  - Geometry & topology
PY  - 2018
SP  - 3501
EP  - 3573
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3501/
DO  - 10.2140/gt.2018.22.3501
ID  - GT_2018_22_6_a7
ER  - 
%0 Journal Article
%A Gursky, Matthew
%A Streets, Jeffrey
%T A formal Riemannian structure on conformal classes and uniqueness for the σ2–Yamabe problem
%J Geometry & topology
%D 2018
%P 3501-3573
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3501/
%R 10.2140/gt.2018.22.3501
%F GT_2018_22_6_a7
Gursky, Matthew; Streets, Jeffrey. A formal Riemannian structure on conformal classes and uniqueness for the σ2–Yamabe problem. Geometry & topology, Tome 22 (2018) no. 6, pp. 3501-3573. doi : 10.2140/gt.2018.22.3501. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3501/

[1] Z Błocki, On geodesics in the space of Kähler metrics, from: "Advances in geometric analysis" (editors S Janeczko, J Li, D H Phong), Adv. Lect. Math. 21, International (2012) 3

[2] S Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008) 951 | DOI

[3] S Brendle, F C Marques, Blow-up phenomena for the Yamabe equation, II, J. Differential Geom. 81 (2009) 225 | DOI

[4] S Brendle, J A Viaclovsky, A variational characterization for σn∕2, Calc. Var. Partial Differential Equations 20 (2004) 399 | DOI

[5] E Calabi, X X Chen, The space of Kähler metrics, II, J. Differential Geom. 61 (2002) 173 | DOI

[6] S Y A Chang, M J Gursky, P Yang, An a priori estimate for a fully nonlinear equation on four-manifolds, J. Anal. Math. 87 (2002) 151 | DOI

[7] S Y A Chang, M J Gursky, P C Yang, An equation of Monge–Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. 155 (2002) 709 | DOI

[8] S Y A Chang, P C Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure Appl. Math. 56 (2003) 1135 | DOI

[9] X Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000) 189 | DOI

[10] X X Chen, G Tian, Geometry of Kähler metrics and foliations by holomorphic discs, Publ. Math. Inst. Hautes Études Sci. 107 (2008) 1 | DOI

[11] B Chow, P Lu, L Ni, Hamilton’s Ricci flow, 77, Science (2006) | DOI

[12] S K Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 | DOI

[13] S K Donaldson, Conjectures in Kähler geometry, from: "Strings and geometry" (editors M Douglas, J Gauntlett, M Gross), Clay Math. Proc. 3, Amer. Math. Soc. (2004) 71

[14] L C Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982) 333 | DOI

[15] L Gårding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959) 957

[16] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, 224, Springer (1977) | DOI

[17] B Guan, The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function, Comm. Anal. Geom. 6 (1998) 687 | DOI

[18] P Guan, J Viaclovsky, G Wang, Some properties of the Schouten tensor and applications to conformal geometry, Trans. Amer. Math. Soc. 355 (2003) 925 | DOI

[19] P Guan, G Wang, A fully nonlinear conformal flow on locally conformally flat manifolds, J. Reine Angew. Math. 557 (2003) 219 | DOI

[20] M J Gursky, J Streets, A formal Riemannian structure on conformal classes and the inverse Gauss curvature flow, preprint (2015)

[21] M J Gursky, J Streets, Variational structure of the vk–Yamabe problem, preprint (2016)

[22] W He, The Gursky–Streets equations, preprint (2017)

[23] N V Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983) 75

[24] J M Lee, T H Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987) 37 | DOI

[25] J Lelong-Ferrand, Transformations conformes et quasiconformes des variétés riemanniennes ; application à la démonstration d’une conjecture de A Lichnerowicz, C. R. Acad. Sci. Paris Sér. A-B 269 (1969)

[26] T Mabuchi, K–energy maps integrating Futaki invariants, Tohoku Math. J. 38 (1986) 575 | DOI

[27] T Mabuchi, Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math. 24 (1987) 227

[28] M Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962) 333 | DOI

[29] D Pollack, Nonuniqueness and high energy solutions for a conformally invariant scalar equation, Comm. Anal. Geom. 1 (1993) 347 | DOI

[30] R C Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geometry 8 (1973) 465 | DOI

[31] R M Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, from: "Topics in calculus of variations" (editor M Giaquinta), Lecture Notes in Math. 1365, Springer (1989) 120 | DOI

[32] S Semmes, Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 | DOI

[33] W Sheng, N S Trudinger, X J Wang, The k–Yamabe problem, from: "Surveys in differential geometry" (editors H D Cao, S T Yau), International (2012) 427 | DOI

[34] J A Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J. 101 (2000) 283 | DOI

[35] J A Viaclovsky, Conformally invariant Monge–Ampère equations : global solutions, Trans. Amer. Math. Soc. 352 (2000) 4371 | DOI

[36] J A Viaclovsky, Estimates and existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom. 10 (2002) 815 | DOI

[37] J Viaclovsky, Conformal geometry and fully nonlinear equations, from: "Inspired by S S Chern" (editor P A Griffiths), Nankai Tracts Math. 11, World Sci. (2006) 435 | DOI

Cité par Sources :