Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give generators for a certain complex hyperbolic braid group. That is, we remove a hyperplane arrangement from complex hyperbolic –space, take the quotient of the remaining space by a discrete group, and find generators for the orbifold fundamental group of the quotient space. These generators have the most natural form: loops corresponding to the hyperplanes which come nearest the basepoint. Our results support the conjecture that motivated this study, the “monstrous proposal”, which posits a relationship between this braid group and the monster finite simple group.
Allcock, Daniel 1 ; Basak, Tathagata 2
@article{GT_2018_22_6_a6, author = {Allcock, Daniel and Basak, Tathagata}, title = {Generators for a complex hyperbolic braid group}, journal = {Geometry & topology}, pages = {3435--3500}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2018}, doi = {10.2140/gt.2018.22.3435}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3435/} }
TY - JOUR AU - Allcock, Daniel AU - Basak, Tathagata TI - Generators for a complex hyperbolic braid group JO - Geometry & topology PY - 2018 SP - 3435 EP - 3500 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3435/ DO - 10.2140/gt.2018.22.3435 ID - GT_2018_22_6_a6 ER -
Allcock, Daniel; Basak, Tathagata. Generators for a complex hyperbolic braid group. Geometry & topology, Tome 22 (2018) no. 6, pp. 3435-3500. doi : 10.2140/gt.2018.22.3435. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3435/
[1] The Leech lattice and complex hyperbolic reflections, Invent. Math. 140 (2000) 283 | DOI
,[2] A monstrous proposal, from: "Groups and symmetries: from neolithic Scots to John McKay" (editors J Harnad, P Winternitz), CRM Proc. Lecture Notes 47, Amer. Math. Soc. (2009) 17 | DOI
,[3] On the Y 555 complex reflection group, J. Algebra 322 (2009) 1454 | DOI
,[4] Completions, branched covers, Artin groups, and singularity theory, Duke Math. J. 162 (2013) 2645 | DOI
,[5] Geometric generators for braid-like groups, Geom. Topol. 20 (2016) 747 | DOI
, ,[6] The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002) 659 | DOI
, , ,[7] The moduli space of cubic threefolds as a ball quotient, 985, Amer. Math. Soc. (2011) | DOI
, , ,[8] Fundamental groups of the spaces of regular orbits of the finite unitary reflection groups of dimension 2, J. Math. Soc. Japan 28 (1976) 447 | DOI
,[9] The complex Lorentzian Leech lattice and the bimonster, J. Algebra 309 (2007) 32 | DOI
,[10] On Coxeter diagrams of complex reflection groups, Trans. Amer. Math. Soc. 364 (2012) 4909 | DOI
,[11] The complex Lorentzian Leech lattice and the bimonster, II, Trans. Amer. Math. Soc. 368 (2016) 4171 | DOI
,[12] User’s guide to PARI/GP, (2016)
, , , , ,[13] Finite complex reflection arrangements are K(π,1), Ann. of Math. 181 (2015) 809 | DOI
,[14] Metric spaces of non-positive curvature, 319, Springer (1999) | DOI
, ,[15] Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971) 57 | DOI
,[16] Vue d’ensemble sur les problèmes de monodromie, from: "Singularités à Cargèse (rencontre sur les singularités en géométrie analytique)", Astérisque 7 et 8, Soc. Math. France (1973) 393
,[17] Introduction to complex reflection groups and their braid groups, 1988, Springer (2010) | DOI
,[18] Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press (1985)
, , , , ,[19] 26 implies the Bimonster, J. Algebra 235 (2001) 805 | DOI
, ,[20] Sphere packings, lattices and groups, 290, Springer (1999) | DOI
, ,[21] The braid groups, Math. Scand. 10 (1962) 119 | DOI
, ,[22] Complex hyperbolic geometry, Oxford Univ. Press (1999)
,[23] Deformations of singularities and variation of GIT quotients, Trans. Amer. Math. Soc. 361 (2009) 2109 | DOI
,[24] The homotopy type of complex hyperplane complements, PhD thesis, Katholieke Universiteit Nijmegen (1983)
,[25] On the fundamental group of the space of cubic surfaces, Math. Z. 162 (1978) 63 | DOI
,[26] Fundamental group of discriminant complements of Brieskorn–Pham polynomials, C. R. Math. Acad. Sci. Paris 345 (2007) 93 | DOI
,[27] The smoothing components of a triangle singularity, II, Math. Ann. 269 (1984) 357 | DOI
,[28] Compactifications defined by arrangements, II : Locally symmetric varieties of type IV, Duke Math. J. 119 (2003) 527 | DOI
,[29] Artin groups and the fundamental groups of some moduli spaces, J. Topol. 1 (2008) 187 | DOI
,[30] Discriminants in the invariant theory of reflection groups, Nagoya Math. J. 109 (1988) 23 | DOI
, ,[31] The complex Leech lattice and maximal subgroups of the Suzuki group, J. Algebra 84 (1983) 151 | DOI
,Cité par Sources :