Generators for a complex hyperbolic braid group
Geometry & topology, Tome 22 (2018) no. 6, pp. 3435-3500.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give generators for a certain complex hyperbolic braid group. That is, we remove a hyperplane arrangement from complex hyperbolic 13–space, take the quotient of the remaining space by a discrete group, and find generators for the orbifold fundamental group of the quotient space. These generators have the most natural form: loops corresponding to the hyperplanes which come nearest the basepoint. Our results support the conjecture that motivated this study, the “monstrous proposal”, which posits a relationship between this braid group and the monster finite simple group.

DOI : 10.2140/gt.2018.22.3435
Classification : 57M05, 20F36, 32S22, 52C35
Keywords: fundamental group, presentations, Artin groups, braid group, hyperplane arrangements, lattices in PU(1,n), Leech lattice, monster

Allcock, Daniel 1 ; Basak, Tathagata 2

1 Department of Mathematics, University of Texas at Austin, Austin, TX, United States
2 Department of Mathematics, Iowa State University, Ames, IA, United States
@article{GT_2018_22_6_a6,
     author = {Allcock, Daniel and Basak, Tathagata},
     title = {Generators for a complex hyperbolic braid group},
     journal = {Geometry & topology},
     pages = {3435--3500},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2018},
     doi = {10.2140/gt.2018.22.3435},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3435/}
}
TY  - JOUR
AU  - Allcock, Daniel
AU  - Basak, Tathagata
TI  - Generators for a complex hyperbolic braid group
JO  - Geometry & topology
PY  - 2018
SP  - 3435
EP  - 3500
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3435/
DO  - 10.2140/gt.2018.22.3435
ID  - GT_2018_22_6_a6
ER  - 
%0 Journal Article
%A Allcock, Daniel
%A Basak, Tathagata
%T Generators for a complex hyperbolic braid group
%J Geometry & topology
%D 2018
%P 3435-3500
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3435/
%R 10.2140/gt.2018.22.3435
%F GT_2018_22_6_a6
Allcock, Daniel; Basak, Tathagata. Generators for a complex hyperbolic braid group. Geometry & topology, Tome 22 (2018) no. 6, pp. 3435-3500. doi : 10.2140/gt.2018.22.3435. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3435/

[1] D Allcock, The Leech lattice and complex hyperbolic reflections, Invent. Math. 140 (2000) 283 | DOI

[2] D Allcock, A monstrous proposal, from: "Groups and symmetries: from neolithic Scots to John McKay" (editors J Harnad, P Winternitz), CRM Proc. Lecture Notes 47, Amer. Math. Soc. (2009) 17 | DOI

[3] D Allcock, On the Y 555 complex reflection group, J. Algebra 322 (2009) 1454 | DOI

[4] D Allcock, Completions, branched covers, Artin groups, and singularity theory, Duke Math. J. 162 (2013) 2645 | DOI

[5] D Allcock, T Basak, Geometric generators for braid-like groups, Geom. Topol. 20 (2016) 747 | DOI

[6] D Allcock, J A Carlson, D Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002) 659 | DOI

[7] D Allcock, J A Carlson, D Toledo, The moduli space of cubic threefolds as a ball quotient, 985, Amer. Math. Soc. (2011) | DOI

[8] E Bannai, Fundamental groups of the spaces of regular orbits of the finite unitary reflection groups of dimension 2, J. Math. Soc. Japan 28 (1976) 447 | DOI

[9] T Basak, The complex Lorentzian Leech lattice and the bimonster, J. Algebra 309 (2007) 32 | DOI

[10] T Basak, On Coxeter diagrams of complex reflection groups, Trans. Amer. Math. Soc. 364 (2012) 4909 | DOI

[11] T Basak, The complex Lorentzian Leech lattice and the bimonster, II, Trans. Amer. Math. Soc. 368 (2016) 4171 | DOI

[12] C Batut, K Belabas, D Benardi, H Cohen, M Olivier, User’s guide to PARI/GP, (2016)

[13] D Bessis, Finite complex reflection arrangements are K(π,1), Ann. of Math. 181 (2015) 809 | DOI

[14] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[15] E Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971) 57 | DOI

[16] E Brieskorn, Vue d’ensemble sur les problèmes de monodromie, from: "Singularités à Cargèse (rencontre sur les singularités en géométrie analytique)", Astérisque 7 et 8, Soc. Math. France (1973) 393

[17] M Broué, Introduction to complex reflection groups and their braid groups, 1988, Springer (2010) | DOI

[18] J H Conway, R T Curtis, S P Norton, R A Parker, R A Wilson, Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Oxford Univ. Press (1985)

[19] J H Conway, C S Simons, 26 implies the Bimonster, J. Algebra 235 (2001) 805 | DOI

[20] J H Conway, N J A Sloane, Sphere packings, lattices and groups, 290, Springer (1999) | DOI

[21] R Fox, L Neuwirth, The braid groups, Math. Scand. 10 (1962) 119 | DOI

[22] W M Goldman, Complex hyperbolic geometry, Oxford Univ. Press (1999)

[23] R Laza, Deformations of singularities and variation of GIT quotients, Trans. Amer. Math. Soc. 361 (2009) 2109 | DOI

[24] H Van Der Lek, The homotopy type of complex hyperplane complements, PhD thesis, Katholieke Universiteit Nijmegen (1983)

[25] A Libgober, On the fundamental group of the space of cubic surfaces, Math. Z. 162 (1978) 63 | DOI

[26] M Lönne, Fundamental group of discriminant complements of Brieskorn–Pham polynomials, C. R. Math. Acad. Sci. Paris 345 (2007) 93 | DOI

[27] E Looijenga, The smoothing components of a triangle singularity, II, Math. Ann. 269 (1984) 357 | DOI

[28] E Looijenga, Compactifications defined by arrangements, II : Locally symmetric varieties of type IV, Duke Math. J. 119 (2003) 527 | DOI

[29] E Looijenga, Artin groups and the fundamental groups of some moduli spaces, J. Topol. 1 (2008) 187 | DOI

[30] P Orlik, L Solomon, Discriminants in the invariant theory of reflection groups, Nagoya Math. J. 109 (1988) 23 | DOI

[31] R A Wilson, The complex Leech lattice and maximal subgroups of the Suzuki group, J. Algebra 84 (1983) 151 | DOI

Cité par Sources :