Faithful actions from hyperplane arrangements
Geometry & topology, Tome 22 (2018) no. 6, pp. 3395-3433.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if X is a smooth quasiprojective 3–fold admitting a flopping contraction, then the fundamental group of an associated simplicial hyperplane arrangement acts faithfully on the derived category of X. The main technical advance is to use torsion pairs as an efficient mechanism to track various objects under iterations of the flop functor (or mutation functor). This allows us to relate compositions of the flop functor (or mutation functor) to the theory of Deligne normal form, and to give a criterion for when a finite composition of 3–fold flops can be understood as a tilt at a single torsion pair. We also use this technique to give a simplified proof of a result of Brav and Thomas (Math. Ann. 351 (2011) 1005–1017) for Kleinian singularities.

DOI : 10.2140/gt.2018.22.3395
Classification : 18E30, 14E30, 14F05, 14J30, 20F36
Keywords: derived category, flopping contraction, Deligne groupoid

Hirano, Yuki 1 ; Wemyss, Michael 2

1 Department of Mathematics, Kyoto University, Kyoto, Japan
2 School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
@article{GT_2018_22_6_a5,
     author = {Hirano, Yuki and Wemyss, Michael},
     title = {Faithful actions from hyperplane arrangements},
     journal = {Geometry & topology},
     pages = {3395--3433},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2018},
     doi = {10.2140/gt.2018.22.3395},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3395/}
}
TY  - JOUR
AU  - Hirano, Yuki
AU  - Wemyss, Michael
TI  - Faithful actions from hyperplane arrangements
JO  - Geometry & topology
PY  - 2018
SP  - 3395
EP  - 3433
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3395/
DO  - 10.2140/gt.2018.22.3395
ID  - GT_2018_22_6_a5
ER  - 
%0 Journal Article
%A Hirano, Yuki
%A Wemyss, Michael
%T Faithful actions from hyperplane arrangements
%J Geometry & topology
%D 2018
%P 3395-3433
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3395/
%R 10.2140/gt.2018.22.3395
%F GT_2018_22_6_a5
Hirano, Yuki; Wemyss, Michael. Faithful actions from hyperplane arrangements. Geometry & topology, Tome 22 (2018) no. 6, pp. 3395-3433. doi : 10.2140/gt.2018.22.3395. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3395/

[1] M Van Den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004) 423 | DOI

[2] A Bondal, D Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001) 327 | DOI

[3] C Brav, H Thomas, Braid groups and Kleinian singularities, Math. Ann. 351 (2011) 1005 | DOI

[4] S Brenner, M C R Butler, A spectral sequence analysis of classical tilting functors, from: "Handbook of tilting theory" (editors L Angeleri Hügel, D Happel, H Krause), London Math. Soc. Lecture Note Ser. 332, Cambridge Univ. Press (2007) 31 | DOI

[5] H Cartan, S Eilenberg, Homological algebra, Princeton Univ. Press (1956)

[6] I Cheltsov, C Shramov, Cremona groups and the icosahedron, CRC (2016)

[7] P Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273 | DOI

[8] L Demonet, O Iyama, G Jasso, τ–tilting finite algebras, bricks and g–vectors, Int. Math. Res. Not. (2017) | DOI

[9] P Deshpande, Arrangements of submanifolds and the tangent bundle complement, PhD thesis, The University of Western Ontario (2011)

[10] W Donovan, M Wemyss, Twists and braids for general 3–fold flops, preprint (2015)

[11] W Donovan, M Wemyss, Noncommutative deformations and flops, Duke Math. J. 165 (2016) 1397 | DOI

[12] D Happel, I Reiten, S O Smalø, Tilting in abelian categories and quasitilted algebras, 575, Amer. Math. Soc. (1996) | DOI

[13] D Happel, L Unger, On a partial order of tilting modules, Algebr. Represent. Theory 8 (2005) 147 | DOI

[14] L Hille, On the volume of a tilting module, Abh. Math. Sem. Univ. Hamburg 76 (2006) 261 | DOI

[15] O Iyama, I Reiten, Fomin–Zelevinsky mutation and tilting modules over Calabi–Yau algebras, Amer. J. Math. 130 (2008) 1087 | DOI

[16] O Iyama, M Wemyss, Affine actions on 3–folds via contracted preprojective algebras and Tits cone intersections, in preparation

[17] O Iyama, M Wemyss, Maximal modifications and Auslander–Reiten duality for non-isolated singularities, Invent. Math. 197 (2014) 521 | DOI

[18] O Iyama, M Wemyss, Reduction of triangulated categories and maximal modification algebras for cAn singularities, J. Reine Angew. Math. (2015) | DOI

[19] S Katz, Small resolutions of Gorenstein threefold singularities, from: "Algebraic geometry" (editors B Harbourne, R Speiser), Contemp. Math. 116, Amer. Math. Soc. (1991) 61 | DOI

[20] L Paris, The covers of a complexified real arrangement of hyperplanes and their fundamental groups, Topology Appl. 53 (1993) 75 | DOI

[21] L Paris, Universal cover of Salvetti’s complex and topology of simplicial arrangements of hyperplanes, Trans. Amer. Math. Soc. 340 (1993) 149 | DOI

[22] L Paris, On the fundamental group of the complement of a complex hyperplane arrangement, from: "Arrangements" (editors M Falk, H Terao), Adv. Stud. Pure Math. 27, Kinokuniya (2000) 257

[23] H C Pinkham, Factorization of birational maps in dimension 3, from: "Singularities, II" (editor P Orlik), Proc. Sympos. Pure Math. 40, Amer. Math. Soc. (1983) 343

[24] C Riedtmann, A Schofield, On a simplicial complex associated with tilting modules, Comment. Math. Helv. 66 (1991) 70 | DOI

[25] M Salvetti, Topology of the complement of real hyperplanes in CN, Invent. Math. 88 (1987) 603 | DOI

[26] P Seidel, R Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001) 37 | DOI

[27] Y Sekiya, K Yamaura, Tilting theoretical approach to moduli spaces over preprojective algebras, Algebr. Represent. Theory 16 (2013) 1733 | DOI

[28] R G Swan, Induced representations and projective modules, Ann. of Math. 71 (1960) 552 | DOI

[29] M Wemyss, Flops and clusters in the homological minimal model programme, Invent. Math. 211 (2018) 435 | DOI

Cité par Sources :