Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define two new families of invariants for (–manifold, graph) pairs which detect the unknot and are additive under connected sum of pairs and () additive under trivalent vertex sum of pairs. The first of these families is closely related to both bridge number and tunnel number. The second of these families is a variation and generalization of Gabai’s width for knots in the –sphere. We give applications to the tunnel number and higher-genus bridge number of connected sums of knots.
Taylor, Scott 1 ; Tomova, Maggy 2
@article{GT_2018_22_6_a2, author = {Taylor, Scott and Tomova, Maggy}, title = {Additive invariants for knots, links and graphs in 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {3235--3286}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2018}, doi = {10.2140/gt.2018.22.3235}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3235/} }
TY - JOUR AU - Taylor, Scott AU - Tomova, Maggy TI - Additive invariants for knots, links and graphs in 3–manifolds JO - Geometry & topology PY - 2018 SP - 3235 EP - 3286 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3235/ DO - 10.2140/gt.2018.22.3235 ID - GT_2018_22_6_a2 ER -
Taylor, Scott; Tomova, Maggy. Additive invariants for knots, links and graphs in 3–manifolds. Geometry & topology, Tome 22 (2018) no. 6, pp. 3235-3286. doi : 10.2140/gt.2018.22.3235. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3235/
[1] Companions of the unknot and width additivity, J. Knot Theory Ramifications 20 (2011) 497 | DOI
, ,[2] Width is not additive, Geom. Topol. 17 (2013) 93 | DOI
, ,[3] Reducing Heegaard splittings, Topology Appl. 27 (1987) 275 | DOI
, ,[4] The Heegaard genus of manifolds obtained by surgery on links and knots, Internat. J. Math. Math. Sci. 3 (1980) 583 | DOI
,[5] Dehn surgery on knots, Ann. of Math. 125 (1987) 237 | DOI
, , , ,[6] A generalized bridge number for links in 3–manifolds, Math. Ann. 294 (1992) 701 | DOI
,[7] Foliations and the topology of 3–manifolds, III, J. Differential Geom. 26 (1987) 479 | DOI
,[8] Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371 | DOI
, ,[9] Heegaard splittings of the pair of the solid torus and the core loop, Rev. Mat. Complut. 14 (2001) 479
, ,[10] Thin position of a pair (3–manifold, 1–submanifold), Pacific J. Math. 197 (2001) 301 | DOI
, ,[11] 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631 | DOI
,[12] Lectures on three-manifold topology, 43, Amer. Math. Soc. (1980)
,[13] Heegaard genus of the connected sum of m–small knots, Comm. Anal. Geom. 14 (2006) 1037 | DOI
, ,[14] The growth rate of the tunnel number of m–small knots, preprint (2015)
, ,[15] An algorithm to determine the Heegaard genus of simple 3–manifolds with nonempty boundary, Algebr. Geom. Topol. 8 (2008) 911 | DOI
,[16] A semigroup of theta-curves in 3–manifolds, Mosc. Math. J. 11 (2011) 805
, ,[17] On the total curvature of knots, Ann. of Math. 52 (1950) 248 | DOI
,[18] Conjugation and the prime decomposition of knots in closed, oriented 3–manifolds, Trans. Amer. Math. Soc. 313 (1989) 785 | DOI
,[19] On boundary primitive manifolds and a theorem of Casson–Gordon, Topology Appl. 125 (2002) 571 | DOI
,[20] There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995) 3527 | DOI
,[21] Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000) 469 | DOI
,[22] On composite types of tunnel number two knots, J. Knot Theory Ramifications 24 (2015) | DOI
,[23] Examples of tunnel number one knots which have the property “1 + 1 = 3”, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113 | DOI
, , ,[24] Tunnel numbers of small knots do not go down under connected sum, Proc. Amer. Math. Soc. 128 (2000) 269 | DOI
, ,[25] Every two-generator knot is prime, Proc. Amer. Math. Soc. 86 (1982) 143 | DOI
,[26] Thin position for a connected sum of small knots, Algebr. Geom. Topol. 2 (2002) 297 | DOI
, ,[27] Heegaard splittings of compact 3–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 921 | DOI
,[28] The tunnel number of the sum of n knots is at least n, Topology 38 (1999) 265 | DOI
, ,[29] 3–manifolds with planar presentations and the width of satellite knots, Trans. Amer. Math. Soc. 358 (2006) 3781 | DOI
, ,[30] Thin position for 3–manifolds, from: "Geometric topology" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231 | DOI
, ,[31] On the additivity of knot width, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7, Geom. Topol. Publ. (2004) 135 | DOI
, ,[32] Uniqueness of bridge surfaces for 2–bridge knots, Math. Proc. Cambridge Philos. Soc. 144 (2008) 639 | DOI
, ,[33] Über eine numerische Knoteninvariante, Math. Z. 61 (1954) 245 | DOI
,[34] The classification of Heegaard splittings for (compact orientable surface) ×S1, Proc. London Math. Soc. 67 (1993) 425 | DOI
,[35] Additivity of bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 135 (2003) 539 | DOI
,[36] Thin position for knots, links, and graphs in 3–manifolds, preprint (2016)
, ,[37] Thin position and the recognition problem for S3, Math. Res. Lett. 1 (1994) 613 | DOI
,[38] On the rank of amalgamated products and product knot groups, Math. Ann. 312 (1998) 761 | DOI
,[39] On quantum SU(2) invariants and generalized bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 117 (1995) 545 | DOI
,Cité par Sources :