Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface
Geometry & topology, Tome 22 (2018) no. 1, pp. 323-437.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the enumerative geometry of rational curves on the Hilbert schemes of points of a K3 surface.

Let S be a K3 surface and let Hilbd(S) be the Hilbert scheme of d points of  S. In the case of elliptically fibered K3 surfaces S 1, we calculate genus-0 Gromov–Witten invariants of Hilbd(S), which count rational curves incident to two generic fibers of the induced Lagrangian fibration Hilbd(S) d. The generating series of these invariants is the Fourier expansion of a power of the Jacobi theta function times a modular form, hence of a Jacobi form.

We also prove results for genus-0 Gromov–Witten invariants of Hilbd(S) for several other natural incidence conditions. In each case, the generating series is again a Jacobi form. For the proof we evaluate Gromov–Witten invariants of the Hilbert scheme of two points of 1 × E, where E is an elliptic curve.

Inspired by our results, we conjecture a formula for the quantum multiplication with divisor classes on Hilbd(S) with respect to primitive curve classes. The conjecture is presented in terms of natural operators acting on the Fock space of S. We prove the conjecture in the first nontrivial case Hilb2(S). As a corollary, we find that the full genus-0 Gromov–Witten theory of Hilb2(S) in primitive classes is governed by Jacobi forms.

We present two applications. A conjecture relating genus-1 invariants of Hilbd (S) to the Igusa cusp form was proposed in joint work with R Pandharipande. Our results prove the conjecture when d = 2. Finally, we present a conjectural formula for the number of hyperelliptic curves on a K3 surface passing through two general points.

DOI : 10.2140/gt.2018.22.323
Classification : 14N35, 14J28, 11F50
Keywords: Gromov–Witten invariants, K3 surfaces

Oberdieck, Georg 1

1 Department Mathematik, ETH Zürich, Zürich, Switzerland, Department of Mathematics, MIT, Cambridge, MA, United States
@article{GT_2018_22_1_a6,
     author = {Oberdieck, Georg},
     title = {Gromov{\textendash}Witten invariants of the {Hilbert} schemes of points of a {K3} surface},
     journal = {Geometry & topology},
     pages = {323--437},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.323},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.323/}
}
TY  - JOUR
AU  - Oberdieck, Georg
TI  - Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface
JO  - Geometry & topology
PY  - 2018
SP  - 323
EP  - 437
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.323/
DO  - 10.2140/gt.2018.22.323
ID  - GT_2018_22_1_a6
ER  - 
%0 Journal Article
%A Oberdieck, Georg
%T Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface
%J Geometry & topology
%D 2018
%P 323-437
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.323/
%R 10.2140/gt.2018.22.323
%F GT_2018_22_1_a6
Oberdieck, Georg. Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface. Geometry & topology, Tome 22 (2018) no. 1, pp. 323-437. doi : 10.2140/gt.2018.22.323. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.323/

[1] A Beauville, Counting rational curves on K3 surfaces, Duke Math. J. 97 (1999) 99 | DOI

[2] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[3] J Bryan, N C Leung, The enumerative geometry of K3 surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371 | DOI

[4] J Bryan, G Oberdieck, R Pandharipande, Q Yin, Curve counting on abelian surfaces and threefolds, preprint (2015)

[5] K Chandrasekharan, Elliptic functions, 281, Springer (1985) | DOI

[6] X Chen, A simple proof that rational curves on K3 are nodal, Math. Ann. 324 (2002) 71 | DOI

[7] C Ciliberto, A L Knutsen, On k–gonal loci in Severi varieties on general K3 surfaces and rational curves on hyperkähler manifolds, J. Math. Pures Appl. 101 (2014) 473 | DOI

[8] M Eichler, D Zagier, The theory of Jacobi forms, 55, Birkhäuser (1985) | DOI

[9] C Faber, R Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI

[10] C Faber, R Pandharipande, Tautological and non-tautological cohomology of the moduli space of curves, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International Press (2013) 293

[11] W Fulton, Intersection theory, 2, Springer (1998) | DOI

[12] W Fulton, R Pandharipande, Notes on stable maps and quantum cohomology, from: "Algebraic geometry, 2" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45 | DOI

[13] T Graber, Enumerative geometry of hyperelliptic plane curves, J. Algebraic Geom. 10 (2001) 725

[14] V Gritsenko, K Hulek, G K Sankaran, Moduli of K3 surfaces and irreducible symplectic manifolds, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International Press (2013) 459

[15] I Grojnowski, Instantons and affine algebras, I : The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275 | DOI

[16] J Harris, D Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982) 23 | DOI

[17] K Hori, S Katz, A Klemm, R Pandharipande, R Thomas, C Vafa, R Vakil, E Zaslow, Mirror symmetry, 1, Amer. Math. Soc. (2003)

[18] S Katz, A Klemm, R Pandharipande, On the motivic stable pairs invariants of K3 surfaces, from: " surfaces and their moduli" (editors C Faber, G Farkas, G van der Geer), Progr. Math. 315, Birkhäuser (2016) 111 | DOI

[19] T Kawai, K Yoshioka, String partition functions and infinite products, Adv. Theor. Math. Phys. 4 (2000) 397 | DOI

[20] Y H Kiem, J Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI

[21] M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157 | DOI

[22] M Lehn, Lectures on Hilbert schemes, from: "Algebraic structures and moduli spaces" (editors J Hurtubise, E Markman), CRM Proc. Lecture Notes 38, Amer. Math. Soc. (2004) 1

[23] M Lehn, C Sorger, The cup product of Hilbert schemes for K3 surfaces, Invent. Math. 152 (2003) 305 | DOI

[24] W P Li, Z Qin, W Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002) 105 | DOI

[25] A Libgober, Elliptic genera, real algebraic varieties and quasi-Jacobi forms, from: "Topology of stratified spaces" (editors G Friedman, E Hunsicker, A Libgober, L Maxim), Math. Sci. Res. Inst. Publ. 58, Cambridge Univ. Press (2011) 95

[26] D Maulik, A Oblomkov, Donaldson–Thomas theory of An × P1, Compos. Math. 145 (2009) 1249 | DOI

[27] D Maulik, A Oblomkov, Quantum cohomology of the Hilbert scheme of points on An–resolutions, J. Amer. Math. Soc. 22 (2009) 1055 | DOI

[28] D Maulik, A Okounkov, Quantum groups and quantum cohomology, preprint (2012)

[29] D Maulik, R Pandharipande, Gromov–Witten theory and Noether–Lefschetz theory, from: "A celebration of algebraic geometry" (editors B Hassett, J McKernan, J Starr, R Vakil), Clay Math. Proc. 18, Amer. Math. Soc. (2013) 469

[30] D Maulik, R Pandharipande, R P Thomas, Curves on K3 surfaces and modular forms, J. Topol. 3 (2010) 937 | DOI

[31] H Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. 145 (1997) 379 | DOI

[32] H Nakajima, Lectures on Hilbert schemes of points on surfaces, 18, Amer. Math. Soc. (1999) | DOI

[33] G Oberdieck, A Serre derivative for even weight Jacobi forms, preprint (2012)

[34] G Oberdieck, The enumerative geometry of the Hilbert schemes of points of a K3 surface, PhD thesis, ETH Zürich (2015) | DOI

[35] G Oberdieck, R Pandharipande, Curve counting on K3 ×E, the Igusa cusp form χ10, and descendent integration, from: " surfaces and their moduli" (editors C Faber, G Farkas, G van der Geer), Progr. Math. 315, Birkhäuser (2016) 245 | DOI

[36] A Okounkov, R Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523 | DOI

[37] R Pandharipande, R P Thomas, The Katz–Klemm–Vafa conjecture for K3 surfaces, Forum Math. Pi 4 (2016) | DOI

[38] D Pontoni, Quantum cohomology of Hilb2(P1 × P1) and enumerative applications, Trans. Amer. Math. Soc. 359 (2007) 5419 | DOI

[39] J P Pridham, Semiregularity as a consequence of Goodwillie’s theorem, preprint (2012)

[40] S C F Rose, Counting hyperelliptic curves on an Abelian surface with quasi-modular forms, Commun. Number Theory Phys. 8 (2014) 243 | DOI

[41] T Schürg, B Toën, G Vezzosi, Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math. 702 (2015) 1 | DOI

[42] S T Yau, E Zaslow, BPS states, string duality, and nodal curves on K3, Nuclear Phys. B 471 (1996) 503 | DOI

Cité par Sources :