Moduli stacks of semistable sheaves and representations of Ext–quivers
Geometry & topology, Tome 22 (2018) no. 5, pp. 3083-3144.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the moduli stacks of semistable sheaves on smooth projective varieties are analytic locally on their coarse moduli spaces described in terms of representations of the associated Ext–quivers with convergent relations. When the underlying variety is a Calabi–Yau 3–fold, our result describes the above moduli stacks as critical loci analytic locally on the coarse moduli spaces. The results in this paper will be applied to the wall-crossing formula of Gopakumar–Vafa invariants defined by Maulik and the author.

DOI : 10.2140/gt.2018.22.3083
Classification : 14D22, 14D23, 14D15
Keywords: moduli spaces of semistable sheaves, representations of quivers

Toda, Yukinobu 1

1 Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Japan
@article{GT_2018_22_5_a13,
     author = {Toda, Yukinobu},
     title = {Moduli stacks of semistable sheaves and representations of {Ext{\textendash}quivers}},
     journal = {Geometry & topology},
     pages = {3083--3144},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.3083},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3083/}
}
TY  - JOUR
AU  - Toda, Yukinobu
TI  - Moduli stacks of semistable sheaves and representations of Ext–quivers
JO  - Geometry & topology
PY  - 2018
SP  - 3083
EP  - 3144
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3083/
DO  - 10.2140/gt.2018.22.3083
ID  - GT_2018_22_5_a13
ER  - 
%0 Journal Article
%A Toda, Yukinobu
%T Moduli stacks of semistable sheaves and representations of Ext–quivers
%J Geometry & topology
%D 2018
%P 3083-3144
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3083/
%R 10.2140/gt.2018.22.3083
%F GT_2018_22_5_a13
Toda, Yukinobu. Moduli stacks of semistable sheaves and representations of Ext–quivers. Geometry & topology, Tome 22 (2018) no. 5, pp. 3083-3144. doi : 10.2140/gt.2018.22.3083. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3083/

[1] J Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013) 2349 | DOI

[2] E Arbarello, G Saccà, Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties, preprint (2015)

[3] O Ben-Bassat, C Brav, V Bussi, D Joyce, A “Darboux theorem” for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015) 1287 | DOI

[4] J Block, Duality and equivalence of module categories in noncommutative geometry, from: "A celebration of the mathematical legacy of Raoul Bott" (editor P R Kotiuga), CRM Proc. Lecture Notes 50, Amer. Math. Soc. (2010) 311

[5] A Bodzenta, A Bondal, Flops and spherical functors, preprint (2015)

[6] T Bridgeland, Stability conditions on triangulated categories, Ann. of Math. 166 (2007) 317 | DOI

[7] B Davison, S Meinhardt, Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras, preprint (2016)

[8] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Clarendon (1990)

[9] E Eriksen, Computing noncommutative deformations of presheaves and sheaves of modules, Canad. J. Math. 62 (2010) 520 | DOI

[10] D Fiorenza, D Iacono, E Martinengo, Differential graded Lie algebras controlling infinitesimal deformations of coherent sheaves, J. Eur. Math. Soc. 14 (2012) 521 | DOI

[11] K Fukaya, Deformation theory, homological algebra and mirror symmetry, from: "Geometry and physics of branes" (editors U Bruzzo, V Gorini, U Moschella), IOP (2003) 121

[12] D Greb, Complex-analytic quotients of algebraic G–varieties, Math. Ann. 363 (2015) 77 | DOI

[13] P Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991) 631 | DOI

[14] P Heinzner, L Migliorini, M Polito, Semistable quotients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1998) 233

[15] D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, 31, Vieweg (1997) | DOI

[16] D Joyce, A classical model for derived critical loci, J. Differential Geom. 101 (2015) 289 | DOI

[17] D Joyce, Y Song, A theory of generalized Donaldson–Thomas invariants, 1020, Amer. Math. Soc. (2012) | DOI

[18] Y Kawamata, On multi-pointed non-commutative deformations and Calabi–Yau threefolds, preprint (2015)

[19] A D King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. 45 (1994) 515 | DOI

[20] M Kontsevich, Y Soibelman, Homological mirror symmetry and torus fibrations, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Scientific (2001) 203 | DOI

[21] M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008)

[22] O A Laudal, Noncommutative deformations of modules, Homology Homotopy Appl. 4 (2002) 357 | DOI

[23] D Luna, Slices étales, from: "Sur les groupes algébriques", Mém. Soc. Math. France 33, Soc. Math. France (1973) 81

[24] D Luna, Fonctions différentiables invariantes sous l’opération d’un groupe réductif, Ann. Inst. Fourier (Grenoble) 26 (1976) 33 | DOI

[25] D Maulik, Y Toda, Gopakumar–Vafa invariants via vanishing cycles, preprint (2016)

[26] S Mukai, An introduction to invariants and moduli, 81, Cambridge Univ. Press (2003)

[27] A Neeman, The topology of quotient varieties, Ann. of Math. 122 (1985) 419 | DOI

[28] T Pantev, B Toën, M Vaquié, G Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013) 271 | DOI

[29] A Polishchuk, Homological mirror symmetry with higher products, from: "Winter school on mirror symmetry, vector bundles and Lagrangian submanifolds" (editors C Vafa, S T Yau), AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc. (2001) 247

[30] M Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968) 208 | DOI

[31] G W Schwarz, The topology of algebraic quotients, from: "Topological methods in algebraic transformation groups" (editors H Kraft, T Petrie, G W Schwarz), Progr. Math. 80, Birkhäuser (1989) 135 | DOI

[32] E Segal, The A∞ deformation theory of a point and the derived categories of local Calabi–Yaus, J. Algebra 320 (2008) 3232 | DOI

[33] Y Toda, Gopakumar–Vafa invariants and wall-crossing, preprint (2017)

[34] J Tu, Homotopy L-infinity spaces, preprint (2014)

[35] R O Wells Jr., Differential analysis on complex manifolds, Prentice-Hall (1973) | DOI

[36] W W Y Wong, Lecture notes on Sobolev spaces for CCA, lecture notes (2010)

Cité par Sources :