Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a chord arc type bound for disks embedded in with constant mean curvature that does not depend on the value of the mean curvature. This bound is inspired by and generalizes the weak chord arc bound of Colding and Minicozzi in Proposition 2.1 of Ann. of Math. 167 (2008) 211–243 for embedded minimal disks. Like in the minimal case, this chord arc bound is a fundamental tool for studying complete constant mean curvature surfaces embedded in with finite topology or with positive injectivity radius.
Meeks, William 1 ; Tinaglia, Giuseppe 2
@article{GT_2018_22_1_a5, author = {Meeks, William and Tinaglia, Giuseppe}, title = {Chord arc properties for constant mean curvature disks}, journal = {Geometry & topology}, pages = {305--322}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, doi = {10.2140/gt.2018.22.305}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.305/} }
TY - JOUR AU - Meeks, William AU - Tinaglia, Giuseppe TI - Chord arc properties for constant mean curvature disks JO - Geometry & topology PY - 2018 SP - 305 EP - 322 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.305/ DO - 10.2140/gt.2018.22.305 ID - GT_2018_22_1_a5 ER -
Meeks, William; Tinaglia, Giuseppe. Chord arc properties for constant mean curvature disks. Geometry & topology, Tome 22 (2018) no. 1, pp. 305-322. doi : 10.2140/gt.2018.22.305. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.305/
[1] The space of embedded minimal surfaces of fixed genus in a 3–manifold, IV : Locally simply connected, Ann. of Math. 160 (2004) 573 | DOI
, ,[2] The Calabi–Yau conjectures for embedded surfaces, Ann. of Math. 167 (2008) 211 | DOI
, ,[3] Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa 18 (1964) 449
,[4] Complete minimal surfaces with index one and stable constant mean curvature surfaces, Comment. Math. Helv. 64 (1989) 34 | DOI
, ,[5] The minimal lamination closure theorem, Duke Math. J. 133 (2006) 467 | DOI
, ,[6] Maximum principles at infinity, J. Differential Geom. 79 (2008) 141 | DOI
, ,[7] Existence of regular neighborhoods for H–surfaces, Illinois J. Math. 55 (2011) 835
, ,[8] One-sided curvature estimates for H–disks, preprint (2014)
, ,[9] Curvature estimates for constant mean curvature surfaces, preprint (2015)
, ,[10] Limit lamination theorem for H–disks, preprint (2015)
, ,[11] The geometry of constant mean curvature surfaces in R3, preprint (2016)
, ,[12] The classical Plateau problem and the topology of three-dimensional manifolds : the embedding of the solution given by Douglas–Morrey and an analytic proof of Dehn’s lemma, Topology 21 (1982) 409 | DOI
, ,[13] General curvature estimates for stable H–surfaces in 3–manifolds and applications, J. Differential Geom. 84 (2010) 623 | DOI
, , ,Cité par Sources :