Chord arc properties for constant mean curvature disks
Geometry & topology, Tome 22 (2018) no. 1, pp. 305-322.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a chord arc type bound for disks embedded in 3 with constant mean curvature that does not depend on the value of the mean curvature. This bound is inspired by and generalizes the weak chord arc bound of Colding and Minicozzi in Proposition 2.1 of Ann. of Math. 167 (2008) 211–243 for embedded minimal disks. Like in the minimal case, this chord arc bound is a fundamental tool for studying complete constant mean curvature surfaces embedded in 3 with finite topology or with positive injectivity radius.

DOI : 10.2140/gt.2018.22.305
Classification : 53A10, 49Q05, 53C42
Keywords: minimal surface, constant mean curvature, minimal lamination, positive injectivity radius, curvature estimates, one-sided curvature estimate, chord arc

Meeks, William 1 ; Tinaglia, Giuseppe 2

1 Department of Mathematics, University of Massachusetts, Amherst, MA, United States
2 Department of Mathematics, King’s College London, London, United Kingdom
@article{GT_2018_22_1_a5,
     author = {Meeks, William and Tinaglia, Giuseppe},
     title = {Chord arc properties for constant mean curvature disks},
     journal = {Geometry & topology},
     pages = {305--322},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.305},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.305/}
}
TY  - JOUR
AU  - Meeks, William
AU  - Tinaglia, Giuseppe
TI  - Chord arc properties for constant mean curvature disks
JO  - Geometry & topology
PY  - 2018
SP  - 305
EP  - 322
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.305/
DO  - 10.2140/gt.2018.22.305
ID  - GT_2018_22_1_a5
ER  - 
%0 Journal Article
%A Meeks, William
%A Tinaglia, Giuseppe
%T Chord arc properties for constant mean curvature disks
%J Geometry & topology
%D 2018
%P 305-322
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.305/
%R 10.2140/gt.2018.22.305
%F GT_2018_22_1_a5
Meeks, William; Tinaglia, Giuseppe. Chord arc properties for constant mean curvature disks. Geometry & topology, Tome 22 (2018) no. 1, pp. 305-322. doi : 10.2140/gt.2018.22.305. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.305/

[1] T H Colding, W P Minicozzi Ii, The space of embedded minimal surfaces of fixed genus in a 3–manifold, IV : Locally simply connected, Ann. of Math. 160 (2004) 573 | DOI

[2] T H Colding, W P Minicozzi Ii, The Calabi–Yau conjectures for embedded surfaces, Ann. of Math. 167 (2008) 211 | DOI

[3] S Lojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa 18 (1964) 449

[4] F J López, A Ros, Complete minimal surfaces with index one and stable constant mean curvature surfaces, Comment. Math. Helv. 64 (1989) 34 | DOI

[5] W H Meeks Iii, H Rosenberg, The minimal lamination closure theorem, Duke Math. J. 133 (2006) 467 | DOI

[6] W H Meeks Iii, H Rosenberg, Maximum principles at infinity, J. Differential Geom. 79 (2008) 141 | DOI

[7] W H Meeks Iii, G Tinaglia, Existence of regular neighborhoods for H–surfaces, Illinois J. Math. 55 (2011) 835

[8] W H Meeks Iii, G Tinaglia, One-sided curvature estimates for H–disks, preprint (2014)

[9] W H Meeks Iii, G Tinaglia, Curvature estimates for constant mean curvature surfaces, preprint (2015)

[10] W H Meeks Iii, G Tinaglia, Limit lamination theorem for H–disks, preprint (2015)

[11] W H Meeks Iii, G Tinaglia, The geometry of constant mean curvature surfaces in R3, preprint (2016)

[12] W H Meeks Iii, S T Yau, The classical Plateau problem and the topology of three-dimensional manifolds : the embedding of the solution given by Douglas–Morrey and an analytic proof of Dehn’s lemma, Topology 21 (1982) 409 | DOI

[13] H Rosenberg, R Souam, E Toubiana, General curvature estimates for stable H–surfaces in 3–manifolds and applications, J. Differential Geom. 84 (2010) 623 | DOI

Cité par Sources :