Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper opens the study of quasi-isometric embeddings of symmetric spaces. The main focus is on the case of equal and higher rank. In this context some expected rigidity survives, but some surprising examples also exist. In particular there exist quasi-isometric embeddings between spaces and where there is no isometric embedding of into . A key ingredient in our proofs of rigidity results is a direct generalization of the Mostow–Morse lemma in higher rank. Typically this lemma is replaced by the quasiflat theorem, which says that the maximal quasiflat is within bounded distance of a finite union of flats. We improve this by showing that the quasiflat is in fact flat off of a subset of codimension .
Fisher, David 1 ; Whyte, Kevin 2
@article{GT_2018_22_5_a12, author = {Fisher, David and Whyte, Kevin}, title = {Quasi-isometric embeddings of symmetric spaces}, journal = {Geometry & topology}, pages = {3049--3082}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2018}, doi = {10.2140/gt.2018.22.3049}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3049/} }
TY - JOUR AU - Fisher, David AU - Whyte, Kevin TI - Quasi-isometric embeddings of symmetric spaces JO - Geometry & topology PY - 2018 SP - 3049 EP - 3082 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3049/ DO - 10.2140/gt.2018.22.3049 ID - GT_2018_22_5_a12 ER -
Fisher, David; Whyte, Kevin. Quasi-isometric embeddings of symmetric spaces. Geometry & topology, Tome 22 (2018) no. 5, pp. 3049-3082. doi : 10.2140/gt.2018.22.3049. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3049/
[1] Quasiflats in hierarchically hyperbolic spaces, preprint (2017)
, , ,[2] Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266 | DOI
, ,[3] Filling-invariants at infinity for manifolds of nonpositive curvature, Trans. Amer. Math. Soc. 350 (1998) 3393 | DOI
, ,[4] Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank, Geom. Funct. Anal. 10 (2000) 327 | DOI
,[5] Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321 | DOI
,[6] Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653 | DOI
, ,[7] The quasi-isometry classification of lattices in semisimple Lie groups, Math. Res. Lett. 4 (1997) 705 | DOI
,[8] Quasi-isometric embeddings of non-uniform lattices, preprint (2015)
, ,[9] Bilipschitz embeddings of negative sectional curvature in products of warped product manifolds, Proc. Amer. Math. Soc. 130 (2002) 2089 | DOI
,[10] Infinite groups as geometric objects, from: "Proceedings of the International Congress of Mathematicians" (editors Z Ciesielski, C Olech), PWN (1984) 385
,[11] Top-dimensional quasiflats in CAT(0) cube complexes, Geom. Topol. 21 (2017) 2281 | DOI
,[12] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115 | DOI
, ,[13] Rigidity of invariant convex sets in symmetric spaces, Invent. Math. 163 (2006) 657 | DOI
, ,[14] Lie groups beyond an introduction, 140, Birkhäuser (2002)
,[15] Corank and asymptotic filling-invariants for symmetric spaces, Geom. Funct. Anal. 10 (2000) 863 | DOI
,[16] Quasi-actions on trees, II : Finite depth Bass–Serre trees, 1008, Amer. Math. Soc. (2011) | DOI
, , ,[17] Quasi-isometric embeddings of symmetric spaces and lattice: the reducible setting, in preparation
,[18] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 | DOI
,Cité par Sources :