Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using the recent theory of noncommutative motives, we compute the additive invariants of orbifolds (equipped with a sheaf of Azumaya algebras) using solely “fixed-point data”. As a consequence, we recover, in a unified and conceptual way, the original results of Vistoli concerning algebraic –theory, of Baranovsky concerning cyclic homology, of the second author and Polishchuk concerning Hochschild homology, and of Baranovsky and Petrov, and Cǎldǎraru and Arinkin (unpublished), concerning twisted Hochschild homology; in the case of topological Hochschild homology and periodic topological cyclic homology, the aforementioned computation is new in the literature. As an application, we verify Grothendieck’s standard conjectures of type and , as well as Voevodsky’s smash-nilpotence conjecture, in the case of “low-dimensional” orbifolds. Finally, we establish a result of independent interest concerning nilpotency in the Grothendieck ring of an orbifold.
Tabuada, Gonçalo 1 ; Van den Bergh, Michel 2
@article{GT_2018_22_5_a11, author = {Tabuada, Gon\c{c}alo and Van den Bergh, Michel}, title = {Additive invariants of orbifolds}, journal = {Geometry & topology}, pages = {3003--3048}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2018}, doi = {10.2140/gt.2018.22.3003}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3003/} }
TY - JOUR AU - Tabuada, Gonçalo AU - Van den Bergh, Michel TI - Additive invariants of orbifolds JO - Geometry & topology PY - 2018 SP - 3003 EP - 3048 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3003/ DO - 10.2140/gt.2018.22.3003 ID - GT_2018_22_5_a11 ER -
Tabuada, Gonçalo; Van den Bergh, Michel. Additive invariants of orbifolds. Geometry & topology, Tome 22 (2018) no. 5, pp. 3003-3048. doi : 10.2140/gt.2018.22.3003. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.3003/
[1] Twisted orbifold K–theory, Comm. Math. Phys. 237 (2003) 533 | DOI
, ,[2] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), 17, Soc. Math. France (2004)
,[3] Formality of derived intersections and the orbifold HKR isomorphism, preprint (2014)
, , ,[4] Orbifold cohomology as periodic cyclic homology, Internat. J. Math. 14 (2003) 791 | DOI
,[5] Brauer groups and crepant resolutions, Adv. Math. 209 (2007) 547 | DOI
, ,[6] Some remarks concerning Voevodsky’s nilpotence conjecture, J. Reine Angew. Math. (2015) | DOI
, , ,[7] McKay equivalence for symplectic resolutions of quotient singularities, Tr. Mat. Inst. Steklova 246 (2004) 20
, ,[8] Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003) 1
, ,[9] Semiorthogonal decomposition for algebraic varieties, preprint (2000)
, ,[10] Derived categories of coherent sheaves, from: "Proceedings of the International Congress of Mathematicians" (editor L Tatsien), Higher Ed. (2002) 47
, ,[11] The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535 | DOI
, , ,[12] A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1 | DOI
, ,[13] Representation theory of finite groups and associative algebras, XI, Interscience (1962) | DOI
, ,[14] Hochschild–Kostant–Rosenberg isomorphism for orbifolds, talk at “Interacting algebraic geometry” conference, Dijon (2016)
,[15] Transformation groups and representation theory, 766, Springer (1979) | DOI
,[16] Additive K–theory, from: "–theory, arithmetic and geometry" (editor Y I Manin), Lecture Notes in Math. 1289, Springer (1987) 67 | DOI
, ,[17] Riemann–Roch algebra, 277, Springer (1985) | DOI
, ,[18] K–theory and intersection theory, from: "Handbook of –theory" (editors E M Friedlander, D R Grayson), Springer (2005) 235 | DOI
,[19] Descent, motives and K–theory, J. Reine Angew. Math. 478 (1996) 127 | DOI
, ,[20] Standard conjectures on algebraic cycles, from: "Algebraic geometry", Oxford Univ. Press (1969) 193
,[21] Algebraic groups and compact generation of their derived categories of representations, Indiana Univ. Math. J. 64 (2015) 1903 | DOI
, ,[22] Equivariant Hodge theory and noncommutative geometry, preprint (2015)
, ,[23] Topological Hochschild homology and the Hasse–Weil zeta function, preprint (2016)
,[24] The stacks project, electronic resource (2014)
,[25] Smash-nilpotent cycles on abelian 3–folds, Math. Res. Lett. 16 (2009) 1007 | DOI
, ,[26] Kleinian singularities, derived categories and Hall algebras, Math. Ann. 316 (2000) 565 | DOI
, ,[27] D–equivalence and K–equivalence, J. Differential Geom. 61 (2002) 147 | DOI
,[28] Quotients by groupoids, Ann. of Math. 145 (1997) 193 | DOI
, ,[29] On the cyclic homology of ringed spaces and schemes, Doc. Math. 3 (1998) 231
,[30] On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1 | DOI
,[31] On differential graded categories, from: "International Congress of Mathematicians" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 151
,[32] Algebraic cycles and the Weil conjectures, from: "Dix exposés sur la cohomologie des schémas", Adv. Stud. Pure Math. 3, North-Holland (1968) 359
,[33] The standard conjectures, from: "Motives" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 3 | DOI
,[34] Noncommutative motives, seminar talk (2005)
,[35] Notes on motives in finite characteristic, from: "Algebra, arithmetic, and geometry : in honor of Yu I Manin, II" (editors Y Tschinkel, Y Zarhin), Progr. Math. 270, Birkhäuser (2009) 213 | DOI
,[36] Mixed noncommutative motives, conference talk, from “Workshop on homological mirror symmetry”, Miami (2010)
,[37] Character rings in algebraic topology, from: "Advances in homotopy theory" (editors S M Salamon, B Steer, W A Sutherland), London Math. Soc. Lecture Note Ser. 139, Cambridge Univ. Press (1989) 111 | DOI
,[38] Numerical and homological equivalence of algebraic cycles on Hodge manifolds, Amer. J. Math. 90 (1968) 366 | DOI
,[39] Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010) 853 | DOI
, ,[40] Correspondences, motifs and monoidal transformations, Mat. Sb. 77(119) (1968) 475
,[41] Graded ring theory, 28, North-Holland (1982)
, ,[42] The connection between the K–theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. 25 (1992) 547 | DOI
,[43] Semiorthogonal decompositions of the categories of equivariant coherent sheaves for some reflection groups, preprint (2015)
, ,[44] Higher algebraic K–theory, I, from: "Algebraic –theory, I : Higher –theories" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 85 | DOI
,[45] Six operations on dg enhancements of derived categories of sheaves, preprint (2015)
,[46] Galois descent of additive invariants, Bull. Lond. Math. Soc. 46 (2014) 385 | DOI
,[47] Noncommutative motives, 63, Amer. Math. Soc. (2015) | DOI
,[48] Recent developments on noncommutative motives, preprint (2016)
,[49] A note on Grothendieck’s standard conjectures of type C+ and D, Proc. Amer. Math. Soc. 146 (2018) 1389 | DOI
,[50] Noncommutative motives of Azumaya algebras, J. Inst. Math. Jussieu 14 (2015) 379 | DOI
, ,[51] The Gysin triangle via localization and A1–homotopy invariance, Trans. Amer. Math. Soc. 370 (2018) 421 | DOI
, ,[52] Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford, -Theory 18 (1999) 33 | DOI
,[53] On orbifolds with discrete torsion, J. Geom. Phys. 15 (1995) 189 | DOI
, ,[54] Higher equivariant K–theory for finite group actions, Duke Math. J. 63 (1991) 399 | DOI
,[55] A nilpotence theorem for cycles algebraically equivalent to zero, Internat. Math. Res. Notices 1995 (1995) 187 | DOI
,[56] Remarks on zero-cycles of self-products of varieties, from: "Moduli of vector bundles" (editor M Maruyama), Lecture Notes in Pure and Appl. Math. 179, Dekker (1996) 265
,Cité par Sources :