We show that the triply graded Khovanov–Rozansky homology of the torus link Tn,k stabilizes as k →∞. We explicitly compute the stable homology, as a ring, which proves a conjecture of Gorsky, Oblomkov, Rasmussen and Shende. To accomplish this, we construct complexes Pn of Soergel bimodules which categorify the Young symmetrizers corresponding to one-row partitions and show that Pn is a stable limit of Rouquier complexes. A certain derived endomorphism ring of Pn computes the aforementioned stable homology of torus links.
Keywords: link homology, categorification
Hogancamp, Matthew 1
@article{10_2140_gt_2018_22_2943,
author = {Hogancamp, Matthew},
title = {Categorified {Young} symmetrizers and stable homology of torus links},
journal = {Geometry & topology},
pages = {2943--3002},
year = {2018},
volume = {22},
number = {5},
doi = {10.2140/gt.2018.22.2943},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2943/}
}
TY - JOUR AU - Hogancamp, Matthew TI - Categorified Young symmetrizers and stable homology of torus links JO - Geometry & topology PY - 2018 SP - 2943 EP - 3002 VL - 22 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2943/ DO - 10.2140/gt.2018.22.2943 ID - 10_2140_gt_2018_22_2943 ER -
Hogancamp, Matthew. Categorified Young symmetrizers and stable homology of torus links. Geometry & topology, Tome 22 (2018) no. 5, pp. 2943-3002. doi: 10.2140/gt.2018.22.2943
[1] , , Categorified Young symmetrizers and stable homology of torus links, II, Selecta Math. 23 (2017) 1739 | DOI
[2] , Khovanov–Rozansky homology via Cohen–Macaulay approximations and Soergel bimodules, preprint (2011)
[3] , , Character sheaves on unipotent groups in positive characteristic: foundations, Selecta Math. 20 (2014) 125 | DOI
[4] , Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (2015) 1053 | DOI
[5] , Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (2015) 1053 | DOI
[6] , Jones polynomials of torus knots via DAHA, Int. Math. Res. Not. 2013 (2013) 5366 | DOI
[7] , , Categorification of the Jones–Wenzl projectors, Quantum Topol. 3 (2012) 139 | DOI
[8] , Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980) 35 | DOI
[9] , , On the computation of torus link homology, preprint (2016)
[10] , , Categorical diagonalization, preprint (2017)
[11] , , Categorical diagonalization of full twists, preprint (2018)
[12] , , Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. (2010) | DOI
[13] , , The Hodge theory of Soergel bimodules, Ann. of Math. 180 (2014) 1089 | DOI
[14] , , Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. 104 (2015) 403 | DOI
[15] , , , Flag Hilbert schemes, colored projectors and Khovanov–Rozansky homology, preprint (2016)
[16] , , , On stable Khovanov homology of torus knots, Exp. Math. 22 (2013) 265 | DOI
[17] , , , , Torus knots and the rational DAHA, Duke Math. J. 163 (2014) 2709 | DOI
[18] , A q–analogue of Young symmetrizer, Osaka J. Math. 23 (1986) 841
[19] , A polynomial action on colored sl2 link homology, preprint (2014)
[20] , Idempotents in triangulated monoidal categories, preprint (2017)
[21] , Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869 | DOI
[22] , , Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 | DOI
[23] , , Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387 | DOI
[24] , Integral HOMFLY-PT and sl(n)–link homology, Int. J. Math. Math. Sci. (2010) | DOI
[25] , An introduction to knot theory, 175, Springer (1997) | DOI
[26] , Stable pairs and the HOMFLY polynomial, Invent. Math. 204 (2016) 787 | DOI
[27] , , Lectures on knot homology, from: "Physics and mathematics of link homology" (editors M Khovanov, J Walcher), Contemp. Math. 680, Amer. Math. Soc. (2016) 137 | DOI
[28] , , , The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, Geom. Topol. 22 (2018) 645 | DOI
[29] , , The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link, Duke Math. J. 161 (2012) 1277 | DOI
[30] , , The sln foam 2–category : a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, Adv. Math. 302 (2016) 1251 | DOI
[31] , Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 | DOI
[32] , A categorification of quantum sl3 projectors and the sl3 Reshetikhin–Turaev invariant of tangles, Quantum Topol. 5 (2014) 1 | DOI
[33] , An infinite torus braid yields a categorified Jones–Wenzl projector, Fund. Math. 225 (2014) 305 | DOI
[34] , Algebraic topology, Springer (1981) | DOI
[35] , , A geometric construction of colored HOMFLYPT homology, Geom. Topol. 21 (2017) 2557 | DOI
Cité par Sources :