Categorified Young symmetrizers and stable homology of torus links
Geometry & topology, Tome 22 (2018) no. 5, pp. 2943-3002 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We show that the triply graded Khovanov–Rozansky homology of the torus link Tn,k stabilizes as k →∞. We explicitly compute the stable homology, as a ring, which proves a conjecture of Gorsky, Oblomkov, Rasmussen and Shende. To accomplish this, we construct complexes Pn of Soergel bimodules which categorify the Young symmetrizers corresponding to one-row partitions and show that Pn is a stable limit of Rouquier complexes. A certain derived endomorphism ring of Pn computes the aforementioned stable homology of torus links.

DOI : 10.2140/gt.2018.22.2943
Classification : 18G60, 57M27
Keywords: link homology, categorification

Hogancamp, Matthew 1

1 Department of Mathematics, University of Southern California, Los Angeles, CA, United States
@article{10_2140_gt_2018_22_2943,
     author = {Hogancamp, Matthew},
     title = {Categorified {Young} symmetrizers and stable homology of torus links},
     journal = {Geometry & topology},
     pages = {2943--3002},
     year = {2018},
     volume = {22},
     number = {5},
     doi = {10.2140/gt.2018.22.2943},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2943/}
}
TY  - JOUR
AU  - Hogancamp, Matthew
TI  - Categorified Young symmetrizers and stable homology of torus links
JO  - Geometry & topology
PY  - 2018
SP  - 2943
EP  - 3002
VL  - 22
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2943/
DO  - 10.2140/gt.2018.22.2943
ID  - 10_2140_gt_2018_22_2943
ER  - 
%0 Journal Article
%A Hogancamp, Matthew
%T Categorified Young symmetrizers and stable homology of torus links
%J Geometry & topology
%D 2018
%P 2943-3002
%V 22
%N 5
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2943/
%R 10.2140/gt.2018.22.2943
%F 10_2140_gt_2018_22_2943
Hogancamp, Matthew. Categorified Young symmetrizers and stable homology of torus links. Geometry & topology, Tome 22 (2018) no. 5, pp. 2943-3002. doi: 10.2140/gt.2018.22.2943

[1] M Abel, M Hogancamp, Categorified Young symmetrizers and stable homology of torus links, II, Selecta Math. 23 (2017) 1739 | DOI

[2] H Becker, Khovanov–Rozansky homology via Cohen–Macaulay approximations and Soergel bimodules, preprint (2011)

[3] M Boyarchenko, V Drinfeld, Character sheaves on unipotent groups in positive characteristic: foundations, Selecta Math. 20 (2014) 125 | DOI

[4] S Cautis, Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (2015) 1053 | DOI

[5] S Cautis, Clasp technology to knot homology via the affine Grassmannian, Math. Ann. 363 (2015) 1053 | DOI

[6] I Cherednik, Jones polynomials of torus knots via DAHA, Int. Math. Res. Not. 2013 (2013) 5366 | DOI

[7] B Cooper, V Krushkal, Categorification of the Jones–Wenzl projectors, Quantum Topol. 3 (2012) 139 | DOI

[8] D Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980) 35 | DOI

[9] B Elias, M Hogancamp, On the computation of torus link homology, preprint (2016)

[10] B Elias, M Hogancamp, Categorical diagonalization, preprint (2017)

[11] B Elias, M Hogancamp, Categorical diagonalization of full twists, preprint (2018)

[12] B Elias, M Khovanov, Diagrammatics for Soergel categories, Int. J. Math. Math. Sci. (2010) | DOI

[13] B Elias, G Williamson, The Hodge theory of Soergel bimodules, Ann. of Math. 180 (2014) 1089 | DOI

[14] E Gorsky, A Neguţ, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. 104 (2015) 403 | DOI

[15] E Gorsky, A Neguţ, J Rasmussen, Flag Hilbert schemes, colored projectors and Khovanov–Rozansky homology, preprint (2016)

[16] E Gorsky, A Oblomkov, J Rasmussen, On stable Khovanov homology of torus knots, Exp. Math. 22 (2013) 265 | DOI

[17] E Gorsky, A Oblomkov, J Rasmussen, V Shende, Torus knots and the rational DAHA, Duke Math. J. 163 (2014) 2709 | DOI

[18] A Gyoja, A q–analogue of Young symmetrizer, Osaka J. Math. 23 (1986) 841

[19] M Hogancamp, A polynomial action on colored sl2 link homology, preprint (2014)

[20] M Hogancamp, Idempotents in triangulated monoidal categories, preprint (2017)

[21] M Khovanov, Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869 | DOI

[22] M Khovanov, L Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 | DOI

[23] M Khovanov, L Rozansky, Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387 | DOI

[24] D Krasner, Integral HOMFLY-PT and sl(n)–link homology, Int. J. Math. Math. Sci. (2010) | DOI

[25] W B R Lickorish, An introduction to knot theory, 175, Springer (1997) | DOI

[26] D Maulik, Stable pairs and the HOMFLY polynomial, Invent. Math. 204 (2016) 787 | DOI

[27] S Nawata, A Oblomkov, Lectures on knot homology, from: "Physics and mathematics of link homology" (editors M Khovanov, J Walcher), Contemp. Math. 680, Amer. Math. Soc. (2016) 137 | DOI

[28] A Oblomkov, J Rasmussen, V Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, Geom. Topol. 22 (2018) 645 | DOI

[29] A Oblomkov, V Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link, Duke Math. J. 161 (2012) 1277 | DOI

[30] H Queffelec, D E V Rose, The sln foam 2–category : a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality, Adv. Math. 302 (2016) 1251 | DOI

[31] J Rasmussen, Some differentials on Khovanov–Rozansky homology, Geom. Topol. 19 (2015) 3031 | DOI

[32] D E V Rose, A categorification of quantum sl3 projectors and the sl3 Reshetikhin–Turaev invariant of tangles, Quantum Topol. 5 (2014) 1 | DOI

[33] L Rozansky, An infinite torus braid yields a categorified Jones–Wenzl projector, Fund. Math. 225 (2014) 305 | DOI

[34] E H Spanier, Algebraic topology, Springer (1981) | DOI

[35] B Webster, G Williamson, A geometric construction of colored HOMFLYPT homology, Geom. Topol. 21 (2017) 2557 | DOI

Cité par Sources :