Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the Seiberg–Witten invariant of smooth spin –manifolds with the rational homology of defined by Mrowka, Ruberman and Saveliev as a signed count of irreducible monopoles amended by an index-theoretic correction term. We prove a splitting formula for this invariant in terms of the Frøyshov invariant and a certain Lefschetz number in the reduced monopole Floer homology of Kronheimer and Mrowka. We apply this formula to obstruct the existence of metrics of positive scalar curvature on certain –manifolds, and to exhibit new classes of homology –spheres of infinite order in the homology cobordism group.
Lin, Jianfeng 1 ; Ruberman, Daniel 2 ; Saveliev, Nikolai 3
@article{GT_2018_22_5_a9, author = {Lin, Jianfeng and Ruberman, Daniel and Saveliev, Nikolai}, title = {A splitting theorem for the {Seiberg-Witten} invariant of a homology {S1} {\texttimes} {S3}}, journal = {Geometry & topology}, pages = {2865--2942}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2018}, doi = {10.2140/gt.2018.22.2865}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2865/} }
TY - JOUR AU - Lin, Jianfeng AU - Ruberman, Daniel AU - Saveliev, Nikolai TI - A splitting theorem for the Seiberg-Witten invariant of a homology S1 × S3 JO - Geometry & topology PY - 2018 SP - 2865 EP - 2942 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2865/ DO - 10.2140/gt.2018.22.2865 ID - GT_2018_22_5_a9 ER -
%0 Journal Article %A Lin, Jianfeng %A Ruberman, Daniel %A Saveliev, Nikolai %T A splitting theorem for the Seiberg-Witten invariant of a homology S1 × S3 %J Geometry & topology %D 2018 %P 2865-2942 %V 22 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2865/ %R 10.2140/gt.2018.22.2865 %F GT_2018_22_5_a9
Lin, Jianfeng; Ruberman, Daniel; Saveliev, Nikolai. A splitting theorem for the Seiberg-Witten invariant of a homology S1 × S3. Geometry & topology, Tome 22 (2018) no. 5, pp. 2865-2942. doi : 10.2140/gt.2018.22.2865. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2865/
[1] Surgery and harmonic spinors, Adv. Math. 220 (2009) 523 | DOI
, , ,[2] Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI
, , ,[3] The monopole category and invariants of bordered 3–manifolds, in preparation
, ,[4] A link surgery spectral sequence in monopole Floer homology, Adv. Math. 226 (2011) 3216 | DOI
,[5] Connected sums in monopole Floer homology, in preparation
, , ,[6] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012)
, , ,[7] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012)
, , ,[8] The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012)
, , ,[9] The absolute gradings on embedded contact homology and Seiberg–Witten Floer cohomology, Algebr. Geom. Topol. 13 (2013) 2239 | DOI
,[10] Adiabatic limits of the η–invariants : the odd-dimensional Atiyah–Patodi–Singer problem, Comm. Math. Phys. 142 (1991) 139
, ,[11] Compactness and gluing theory for monopoles, 15, Geometry Topology Publications (2008) | DOI
,[12] Monopole Floer homology for rational homology 3–spheres, Duke Math. J. 155 (2010) 519 | DOI
,[13] W–invariants and Neumann–Siebenmann invariants for Seifert homology 3–spheres, Topology Appl. 116 (2001) 333 | DOI
, , ,[14] Differentiable structures on punctured 4–manifolds, Topology Appl. 51 (1993) 291 | DOI
, ,[15] Invariance theory, the heat equation, and the Atiyah–Singer index theorem, 11, Publish or Perish (1984)
,[16] Dehn’s construction on knots, Bol. Soc. Mat Mexicana 15 (1970) 58
,[17] Involutive Heegaard Floer homology, Duke Math. J. 166 (2017) 1211 | DOI
, ,[18] A connected sum formula for involutive Heegaard Floer homology, Selecta Math. 24 (2018) 1183 | DOI
, , ,[19] Surgery obstructions and Heegaard Floer homology, Geom. Topol. 20 (2016) 2219 | DOI
, , ,[20] An absolute grading on Heegaard Floer homology by homotopy classes of oriented 2–plane fields, J. Symplectic Geom. 15 (2017) 51 | DOI
, ,[21] A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 | DOI
,[22] Patterns in knot cohomology, I, Experiment. Math. 12 (2003) 365
,[23] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[24] Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI
, , , ,[25] HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, preprint (2010)
, , ,[26] HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard–Floer correspondence, preprint (2010)
, , ,[27] HF = HM, III : Holomorphic curves and the differential for the ech/Heegaard Floer correspondence, preprint (2010)
, , ,[28] HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, preprint (2011)
, , ,[29] HF = HM, V : Seiberg–Witten–Floer homology and handle addition, preprint (2012)
, , ,[30] Heegaard Floer invariants in codimension one, preprint (2016)
, ,[31] Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963) 7
,[32] A Morse–Bott approach to monopole Floer homology and the triangulation conjecture, preprint (2014)
,[33] The Seiberg–Witten equations on end-periodic manifolds and positive scalar curvature metrics, preprint (2016)
,[34] On the Frøyshov invariant and monopole Lefschetz number, preprint (2018)
, , ,[35] Generic metrics and connections on Spin- and Spinc–manifolds, Comm. Math. Phys. 188 (1997) 407 | DOI
,[36] A gluing theorem for the relative Bauer–Furuta invariants, J. Differential Geom. 76 (2007) 117
,[37] An introduction to knot Floer homology, from: "Physics and mathematics of link homology" (editors M Khovanov, J Walcher), Contemp. Math. 680, Amer. Math. Soc. (2016) 99
,[38] Pin(2)–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147 | DOI
,[39] On the Khovanov and knot Floer homologies of quasi-alternating links, from: "Proceedings of Gökova Geometry–Topology Conference 2007" (editors S Akbulut, T Önder, R J Stern), GGT (2008) 60
, ,[40] Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685 | DOI
, , ,[41] Seiberg–Witten equations, end-periodic Dirac operators, and a lift of Rohlin’s invariant, J. Differential Geom. 88 (2011) 333 | DOI
, , ,[42] An index theorem for end-periodic operators, Compos. Math. 152 (2016) 399 | DOI
, , ,[43] On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds, Geom. Topol. 9 (2005) 991 | DOI
,[44] Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1 | DOI
, ,[45] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 | DOI
, ,[46] Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225 | DOI
, ,[47] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI
, ,[48] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
, ,[49] On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1 | DOI
, ,[50] Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101 | DOI
, ,[51] Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1 | DOI
, ,[52] Absolute gradings on ECH and Heegaard Floer homology, preprint (2014)
,[53] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[54] Rohlin’s invariant and gauge theory, II : Mapping tori, Geom. Topol. 8 (2004) 35 | DOI
, ,[55] Casson-type invariants in dimension four, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 281
, ,[56] Dirac operators on manifolds with periodic ends, J. Gökova Geom. Topol. 1 (2007) 33
, ,[57] The μ–invariant of Seifert fibered homology spheres and the Dirac operator, Geom. Dedicata 154 (2011) 93 | DOI
, ,[58] Fukumoto–Furuta invariants of plumbed homology 3–spheres, Pacific J. Math. 205 (2002) 465 | DOI
,[59] Invariants for homology 3–spheres, 140, Springer (2002) | DOI
,[60] On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159 | DOI
, ,[61] Pin(2)–equivariant Seiberg–Witten Floer homology of Seifert fibrations, preprint (2015)
,[62] Manolescu invariants of connected sums, Proc. Lond. Math. Soc. 115 (2017) 1072 | DOI
,[63] Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI
,[64] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 | DOI
,Cité par Sources :