Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A tiling of the sphere by triangles, squares, or hexagons is convex if every vertex has at most , , or polygons adjacent to it, respectively. Assigning an appropriate weight to any tiling, our main results are explicit formulas for the weighted number of convex tilings with a given number of tiles. To prove these formulas, we build on work of Thurston, who showed that the convex triangulations correspond to orbits of vectors of positive norm in a Hermitian lattice . First, we extend this result to convex square and hexagon tilings. Then, we explicitly compute the relevant lattice . Next, we integrate the Siegel theta function for to produce a modular form whose Fourier coefficients encode the weighted number of tilings. Finally, we determine the formulas using finite-dimensionality of spaces of modular forms.
Engel, Philip 1 ; Smillie, Peter 1
@article{GT_2018_22_5_a8, author = {Engel, Philip and Smillie, Peter}, title = {The number of convex tilings of the sphere by triangles, squares, or hexagons}, journal = {Geometry & topology}, pages = {2839--2864}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2018}, doi = {10.2140/gt.2018.22.2839}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2839/} }
TY - JOUR AU - Engel, Philip AU - Smillie, Peter TI - The number of convex tilings of the sphere by triangles, squares, or hexagons JO - Geometry & topology PY - 2018 SP - 2839 EP - 2864 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2839/ DO - 10.2140/gt.2018.22.2839 ID - GT_2018_22_5_a8 ER -
%0 Journal Article %A Engel, Philip %A Smillie, Peter %T The number of convex tilings of the sphere by triangles, squares, or hexagons %J Geometry & topology %D 2018 %P 2839-2864 %V 22 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2839/ %R 10.2140/gt.2018.22.2839 %F GT_2018_22_5_a8
Engel, Philip; Smillie, Peter. The number of convex tilings of the sphere by triangles, squares, or hexagons. Geometry & topology, Tome 22 (2018) no. 5, pp. 2839-2864. doi : 10.2140/gt.2018.22.2839. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2839/
[1] Convex polyhedra, Springer (2005) | DOI
,[2] The Leech lattice and complex hyperbolic reflections, Invent. Math. 140 (2000) 283 | DOI
,[3] New complex- and quaternion-hyperbolic reflection groups, Duke Math. J. 103 (2000) 303 | DOI
,[4] The complex Lorentzian Leech lattice and the bimonster, J. Algebra 309 (2007) 32 | DOI
,[5] Automorphic forms on Os+2,2(R) and infinite products, Invent. Math. 120 (1995) 161 | DOI
,[6] Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues, Math. Ann. 342 (2008) 673 | DOI
, , ,[7] Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986) 5 | DOI
, ,[8] Triangulations of the sphere and degenerations of K3 surfaces, preprint (2008)
,[9] Uniformization by Lauricella functions — an overview of the theory of Deligne–Mostow, from: "Arithmetic and geometry around hypergeometric functions" (editors R P Holzapfel, A M Uludağ, M Yoshida), Progr. Math. 260, Birkhäuser (2007) 207 | DOI
,[10] The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces, preprint (2013)
,[11] Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. 63 (1986) 91 | DOI
,[12] Unearthing the visions of a master : harmonic Maass forms and number theory, from: "Current developments in mathematics" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2009) 347
,[13] Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques, Ann. Sci. École Norm. Sup. 10 (1881) 305 | DOI
,[14] Notes on shapes of polyhedra, preprint (2015)
,[15] Indefinite quadratische Formen und Funktionentheorie, II, Math. Ann. 124 (1952) 364 | DOI
,[16] Shapes of polyhedra and triangulations of the sphere, from: "The Epstein birthday schrift" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1, Geom. Topol. Publ. (1998) 511 | DOI
,[17] A census of planar triangulations, Canad. J. Math. 14 (1962) 21 | DOI
,Cité par Sources :