Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a Smith-type inequality for regular covering spaces in monopole Floer homology. Using the monopole Floer/Heegaard Floer correspondence, we deduce that if a –manifold admits a –sheeted regular cover that is a ––space (for prime), then is a ––space. Further, we obtain constraints on surgeries on a knot being regular covers over other surgeries on the same knot, and over surgeries on other knots.
Lidman, Tye 1 ; Manolescu, Ciprian 2
@article{GT_2018_22_5_a7, author = {Lidman, Tye and Manolescu, Ciprian}, title = {Floer homology and covering spaces}, journal = {Geometry & topology}, pages = {2817--2838}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2018}, doi = {10.2140/gt.2018.22.2817}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2817/} }
Lidman, Tye; Manolescu, Ciprian. Floer homology and covering spaces. Geometry & topology, Tome 22 (2018) no. 5, pp. 2817-2838. doi : 10.2140/gt.2018.22.2817. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2817/
[1] The virtual Haken conjecture, Doc. Math. 18 (2013) 1045
,[2] Montesinos knots, Hopf plumbings, and L-space surgeries, J. Math. Soc. Japan 70 (2018) 95 | DOI
, ,[3] A link surgery spectral sequence in monopole Floer homology, Adv. Math. 226 (2011) 3216 | DOI
,[4] Foliations, orders, representations, L-spaces and graph manifolds, Adv. Math. 310 (2017) 159 | DOI
, ,[5] On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI
, , ,[6] Orderable 3–manifold groups, Ann. Inst. Fourier Grenoble 55 (2005) 243 | DOI
, , ,[7] Introduction to compact transformation groups, 46, Academic (1972)
,[8] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012)
, , ,[9] The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012)
, , ,[10] The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012)
, , ,[11] Isolated invariant sets and the Morse index, 38, Amer. Math. Soc. (1978)
,[12] A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems 7 (1987) 93 | DOI
,[13] On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952) 138 | DOI
,[14] Dehn surgery on knots, from: "Proceedings of the International Congress of Mathematicians" (editor I Satake), Math. Soc. Japan (1991) 631
,[15] Taut foliations on graph manifolds, preprint (2015)
, , , ,[16] A rank inequality for the knot Floer homology of double branched covers, Algebr. Geom. Topol. 12 (2012) 2127 | DOI
,[17] A note on cabling and L–space surgeries, Algebr. Geom. Topol. 11 (2011) 219 | DOI
,[18] Heegaard Floer groups of Dehn surgeries, J. Lond. Math. Soc. 92 (2015) 499 | DOI
,[19] On the Heegaard Floer homology of a surface times a circle, Adv. Math. 218 (2008) 728 | DOI
, ,[20] Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI
, ,[21] Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI
, , , ,[22] HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, preprint (2010)
, , ,[23] HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard–Floer correspondence, preprint (2010)
, , ,[24] HF = HM, III : Holomorphic curves and the differential for the ech/Heegaard Floer correspondence, preprint (2010)
, , ,[25] HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, preprint (2011)
, , ,[26] HF = HM, V : Seiberg–Witten–Floer homology and handle addition, preprint (2012)
, , ,[27] Covering spaces and Q–gradings on Heegaard Floer homology, J. Symplectic Geom. 6 (2008) 33
, ,[28] Heegaard splittings and Seiberg–Witten monopoles, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 173
,[29] The equivalence of two Seiberg–Witten Floer homologies, preprint (2016)
, ,[30] Pretzel knots with L–space surgeries, Michigan Math. J. 65 (2016) 105 | DOI
, ,[31] Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers, J. Eur. Math. Soc. 18 (2016) 281 | DOI
, ,[32] Ozsváth–Szabó invariants and tight contact 3–manifolds, III, J. Symplectic Geom. 5 (2007) 357
, ,[33] Seiberg–Witten–Floer stable homotopy type of three-manifolds with b1 = 0, Geom. Topol. 7 (2003) 889 | DOI
,[34] Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737 | DOI
,[35] Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 | DOI
, ,[36] Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1 | DOI
, ,[37] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI
, ,[38] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
, ,[39] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI
, ,[40] On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI
, ,[41] On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1 | DOI
, ,[42] Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101 | DOI
, ,[43] Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1 | DOI
, ,[44] On L–spaces and non left-orderable 3–manifold groups, preprint (2009)
,[45] The Conley index for flows preserving generalized symmetries, from: "Conley index theory" (editors K Mischaikow, M Mrozek, P Zgliczyński), Banach Center Publ. 47, Polish Acad. Sci. Inst. Math. (1999) 193
,[46] Localization for involutions in Floer cohomology, Geom. Funct. Anal. 20 (2010) 1464 | DOI
, ,[47] Transformations of finite period, Ann. of Math. 39 (1938) 127 | DOI
,[48] Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI
,[49] Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 | DOI
,[50] Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 | DOI
,[51] Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 | DOI
,[52] Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 | DOI
,[53] The structure of groups with a quasiconvex hierarchy, preprint (2011)
,Cité par Sources :