Floer homology and covering spaces
Geometry & topology, Tome 22 (2018) no. 5, pp. 2817-2838.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a Smith-type inequality for regular covering spaces in monopole Floer homology. Using the monopole Floer/Heegaard Floer correspondence, we deduce that if a 3–manifold Y admits a pn–sheeted regular cover that is a pL–space (for p prime), then Y is a pL–space. Further, we obtain constraints on surgeries on a knot being regular covers over other surgeries on the same knot, and over surgeries on other knots.

DOI : 10.2140/gt.2018.22.2817
Classification : 57R58, 57M10, 57M60
Keywords: Smith inequality, Seiberg–Witten, Heegaard Floer homology, virtually cosmetic, L–spaces

Lidman, Tye 1 ; Manolescu, Ciprian 2

1 Department of Mathematics, North Carolina State University, Raleigh, NC, United States
2 Department of Mathematics, UCLA, Los Angeles, CA, United States
@article{GT_2018_22_5_a7,
     author = {Lidman, Tye and Manolescu, Ciprian},
     title = {Floer homology and covering spaces},
     journal = {Geometry & topology},
     pages = {2817--2838},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.2817},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2817/}
}
TY  - JOUR
AU  - Lidman, Tye
AU  - Manolescu, Ciprian
TI  - Floer homology and covering spaces
JO  - Geometry & topology
PY  - 2018
SP  - 2817
EP  - 2838
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2817/
DO  - 10.2140/gt.2018.22.2817
ID  - GT_2018_22_5_a7
ER  - 
%0 Journal Article
%A Lidman, Tye
%A Manolescu, Ciprian
%T Floer homology and covering spaces
%J Geometry & topology
%D 2018
%P 2817-2838
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2817/
%R 10.2140/gt.2018.22.2817
%F GT_2018_22_5_a7
Lidman, Tye; Manolescu, Ciprian. Floer homology and covering spaces. Geometry & topology, Tome 22 (2018) no. 5, pp. 2817-2838. doi : 10.2140/gt.2018.22.2817. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2817/

[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045

[2] K L Baker, A H Moore, Montesinos knots, Hopf plumbings, and L-space surgeries, J. Math. Soc. Japan 70 (2018) 95 | DOI

[3] J M Bloom, A link surgery spectral sequence in monopole Floer homology, Adv. Math. 226 (2011) 3216 | DOI

[4] S Boyer, A Clay, Foliations, orders, representations, L-spaces and graph manifolds, Adv. Math. 310 (2017) 159 | DOI

[5] S Boyer, C M Gordon, L Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI

[6] S Boyer, D Rolfsen, B Wiest, Orderable 3–manifold groups, Ann. Inst. Fourier Grenoble 55 (2005) 243 | DOI

[7] G E Bredon, Introduction to compact transformation groups, 46, Academic (1972)

[8] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012)

[9] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012)

[10] V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012)

[11] C Conley, Isolated invariant sets and the Morse index, 38, Amer. Math. Soc. (1978)

[12] A Floer, A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergodic Theory Dynam. Systems 7 (1987) 93 | DOI

[13] E E Floyd, On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952) 138 | DOI

[14] C M Gordon, Dehn surgery on knots, from: "Proceedings of the International Congress of Mathematicians" (editor I Satake), Math. Soc. Japan (1991) 631

[15] J Hanselman, J Rasmussen, S D Rasmussen, L Watson, Taut foliations on graph manifolds, preprint (2015)

[16] K Hendricks, A rank inequality for the knot Floer homology of double branched covers, Algebr. Geom. Topol. 12 (2012) 2127 | DOI

[17] J Hom, A note on cabling and L–space surgeries, Algebr. Geom. Topol. 11 (2011) 219 | DOI

[18] S Jabuka, Heegaard Floer groups of Dehn surgeries, J. Lond. Math. Soc. 92 (2015) 499 | DOI

[19] S Jabuka, T E Mark, On the Heegaard Floer homology of a surface times a circle, Adv. Math. 218 (2008) 728 | DOI

[20] P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) | DOI

[21] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI

[22] C Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, preprint (2010)

[23] C Kutluhan, Y J Lee, C H Taubes, HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard–Floer correspondence, preprint (2010)

[24] C Kutluhan, Y J Lee, C H Taubes, HF = HM, III : Holomorphic curves and the differential for the ech/Heegaard Floer correspondence, preprint (2010)

[25] C Kutluhan, Y J Lee, C H Taubes, HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, preprint (2011)

[26] C Kutluhan, Y J Lee, C H Taubes, HF = HM, V : Seiberg–Witten–Floer homology and handle addition, preprint (2012)

[27] D A Lee, R Lipshitz, Covering spaces and Q–gradings on Heegaard Floer homology, J. Symplectic Geom. 6 (2008) 33

[28] Y J Lee, Heegaard splittings and Seiberg–Witten monopoles, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 173

[29] T Lidman, C Manolescu, The equivalence of two Seiberg–Witten Floer homologies, preprint (2016)

[30] T Lidman, A H Moore, Pretzel knots with L–space surgeries, Michigan Math. J. 65 (2016) 105 | DOI

[31] R Lipshitz, D Treumann, Noncommutative Hodge-to-de Rham spectral sequence and the Heegaard Floer homology of double covers, J. Eur. Math. Soc. 18 (2016) 281 | DOI

[32] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact 3–manifolds, III, J. Symplectic Geom. 5 (2007) 357

[33] C Manolescu, Seiberg–Witten–Floer stable homotopy type of three-manifolds with b1 = 0, Geom. Topol. 7 (2003) 889 | DOI

[34] L Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737 | DOI

[35] W D Neumann, D Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 | DOI

[36] Y Ni, Z Wu, Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1 | DOI

[37] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311 | DOI

[38] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[39] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[40] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281 | DOI

[41] P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1 | DOI

[42] P S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101 | DOI

[43] P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1 | DOI

[44] T Peters, On L–spaces and non left-orderable 3–manifold groups, preprint (2009)

[45] A M Pruszko, The Conley index for flows preserving generalized symmetries, from: "Conley index theory" (editors K Mischaikow, M Mrozek, P Zgliczyński), Banach Center Publ. 47, Polish Acad. Sci. Inst. Math. (1999) 193

[46] P Seidel, I Smith, Localization for involutions in Floer cohomology, Geom. Funct. Anal. 20 (2010) 1464 | DOI

[47] P A Smith, Transformations of finite period, Ann. of Math. 39 (1938) 127 | DOI

[48] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 | DOI

[49] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 | DOI

[50] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 | DOI

[51] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 | DOI

[52] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 | DOI

[53] D T Wise, The structure of groups with a quasiconvex hierarchy, preprint (2011)

Cité par Sources :