Exotic open 4–manifolds which are nonleaves
Geometry & topology, Tome 22 (2018) no. 5, pp. 2791-2816.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the possibility of realizing exotic smooth structures on finitely punctured simply connected closed 4–manifolds as leaves of a codimension-one foliation on a compact manifold. In particular, we show the existence of uncountably many smooth open 4–manifolds which are not diffeomorphic to any leaf of a codimension-one C2 foliation on a compact manifold. These examples include some exotic 4 ’s and exotic cylinders S3 × .

DOI : 10.2140/gt.2018.22.2791
Classification : 37C85, 53C12, 57R30, 57R55
Keywords: exotic $\mathbb{R}^4$, nonleaves, codimension-one foliations

Meniño Cotón, Carlos 1 ; Schweitzer, Paul 2

1 Departamento de Análise, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, Rio de Janeiro-RJ, Brazil
2 Departamento de Matemática, Pontificia Universidade Católica do Rio de Janeiro, Gávea, Rio de Janeiro-RJ, Brazil
@article{GT_2018_22_5_a6,
     author = {Meni\~no Cot\'on, Carlos and Schweitzer, Paul},
     title = {Exotic open 4{\textendash}manifolds which are nonleaves},
     journal = {Geometry & topology},
     pages = {2791--2816},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.2791},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2791/}
}
TY  - JOUR
AU  - Meniño Cotón, Carlos
AU  - Schweitzer, Paul
TI  - Exotic open 4–manifolds which are nonleaves
JO  - Geometry & topology
PY  - 2018
SP  - 2791
EP  - 2816
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2791/
DO  - 10.2140/gt.2018.22.2791
ID  - GT_2018_22_5_a6
ER  - 
%0 Journal Article
%A Meniño Cotón, Carlos
%A Schweitzer, Paul
%T Exotic open 4–manifolds which are nonleaves
%J Geometry & topology
%D 2018
%P 2791-2816
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2791/
%R 10.2140/gt.2018.22.2791
%F GT_2018_22_5_a6
Meniño Cotón, Carlos; Schweitzer, Paul. Exotic open 4–manifolds which are nonleaves. Geometry & topology, Tome 22 (2018) no. 5, pp. 2791-2816. doi : 10.2140/gt.2018.22.2791. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2791/

[1] T Asselmeyer-Maluga, C H Brans, Exotic smoothness and physics: differential topology and spacetime models, World Sci. (2007) | DOI

[2] O Attie, S Hurder, Manifolds which cannot be leaves of foliations, Topology 35 (1996) 335 | DOI

[3] Ž Bižaca, J Etnyre, Smooth structures on collarable ends of 4–manifolds, Topology 37 (1998) 461 | DOI

[4] A Candel, L Conlon, Foliations, I, 23, Amer. Math. Soc. (2000) | DOI

[5] J Cantwell, L Conlon, Poincaré–Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc. 265 (1981) 181 | DOI

[6] J Cantwell, L Conlon, Every surface is a leaf, Topology 26 (1987) 265 | DOI

[7] S De Michelis, M H Freedman, Uncountably many exotic R4’s in standard 4–space, J. Differential Geom. 35 (1992) 219 | DOI

[8] P R Dippolito, Codimension one foliations of closed manifolds, Ann. of Math. 107 (1978) 403 | DOI

[9] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279 | DOI

[10] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 | DOI

[11] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[12] M H Freedman, L R Taylor, A universal smoothing of four-space, J. Differential Geom. 24 (1986) 69 | DOI

[13] M Furuta, Monopole equation and the –conjecture, Math. Res. Lett. 8 (2001) 279 | DOI

[14] S Ganzell, Ends of 4–manifolds, Topology Proc. 30 (2006) 223

[15] L J Gerstein, Basic quadratic forms, 90, Amer. Math. Soc. (2008) | DOI

[16] É Ghys, Une variété qui n’est pas une feuille, Topology 24 (1985) 67 | DOI

[17] R E Gompf, An infinite set of exotic R4’s, J. Differential Geom. 21 (1985) 283 | DOI

[18] R E Gompf, An exotic menagerie, J. Differential Geom. 37 (1993) 199 | DOI

[19] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) | DOI

[20] R E Greene, Complete metrics of bounded curvature on noncompact manifolds, Arch. Math. Basel 31 (1978) 89 | DOI

[21] A Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa 16 (1962) 367

[22] G Hector, Croissance des feuilletages presque sans holonomie, from: "Differential topology, foliations and Gelfand–Fuks cohomology" (editor P A Schweitzer), Lecture Notes in Math. 652, Springer (1978) 141 | DOI

[23] T Inaba, T Nishimori, M Takamura, N Tsuchiya, Open manifolds which are nonrealizable as leaves, Kodai Math. J. 8 (1985) 112 | DOI

[24] T Januszkiewicz, Characteristic invariants of noncompact Riemannian manifolds, Topology 23 (1984) 289 | DOI

[25] J Król, Exotic smooth 4–manifolds and gerbes as geometry for quantum gravity, Acta Phys. Polon. B 40 (2009) 3079

[26] J A Álvarez López, R Barral Lijó, Bounded geometry and leaves, Math. Nachr. 290 (2017) 1448 | DOI

[27] A Navas, Groups of circle diffeomorphisms, Univ. of Chicago Press (2011) | DOI

[28] A Phillips, D Sullivan, Geometry of leaves, Topology 20 (1981) 209 | DOI

[29] F Quinn, Ends of maps, III : Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503 | DOI

[30] P A Schweitzer, Riemannian manifolds not quasi-isometric to leaves in codimension one foliations, Ann. Inst. Fourier Grenoble 61 (2011) 1599 | DOI

[31] J P Serre, A course in arithmetic, 7, Springer (1973) | DOI

[32] C H Taubes, Gauge theory on asymptotically periodic 4–manifolds, J. Differential Geom. 25 (1987) 363 | DOI

[33] L R Taylor, An invariant of smooth 4–manifolds, Geom. Topol. 1 (1997) 71 | DOI

[34] L R Taylor, Impossible metric conditions on exotic R4’s, Asian J. Math. 12 (2008) 285 | DOI

[35] H Whitney, Differentiable manifolds, Ann. of Math. 37 (1936) 645 | DOI

[36] A Zeghib, An example of a 2–dimensional no leaf, from: "Geometric study of foliations" (editors T Mizutani, K Masuda, S Matsumoto, T Inaba, T Tsuboi, Y Mitsumatsu), World Sci. (1994) 475

Cité par Sources :