Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the possibility of realizing exotic smooth structures on finitely punctured simply connected closed –manifolds as leaves of a codimension-one foliation on a compact manifold. In particular, we show the existence of uncountably many smooth open –manifolds which are not diffeomorphic to any leaf of a codimension-one foliation on a compact manifold. These examples include some exotic ’s and exotic cylinders .
Meniño Cotón, Carlos 1 ; Schweitzer, Paul 2
@article{GT_2018_22_5_a6, author = {Meni\~no Cot\'on, Carlos and Schweitzer, Paul}, title = {Exotic open 4{\textendash}manifolds which are nonleaves}, journal = {Geometry & topology}, pages = {2791--2816}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2018}, doi = {10.2140/gt.2018.22.2791}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2791/} }
TY - JOUR AU - Meniño Cotón, Carlos AU - Schweitzer, Paul TI - Exotic open 4–manifolds which are nonleaves JO - Geometry & topology PY - 2018 SP - 2791 EP - 2816 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2791/ DO - 10.2140/gt.2018.22.2791 ID - GT_2018_22_5_a6 ER -
Meniño Cotón, Carlos; Schweitzer, Paul. Exotic open 4–manifolds which are nonleaves. Geometry & topology, Tome 22 (2018) no. 5, pp. 2791-2816. doi : 10.2140/gt.2018.22.2791. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2791/
[1] Exotic smoothness and physics: differential topology and spacetime models, World Sci. (2007) | DOI
, ,[2] Manifolds which cannot be leaves of foliations, Topology 35 (1996) 335 | DOI
, ,[3] Smooth structures on collarable ends of 4–manifolds, Topology 37 (1998) 461 | DOI
, ,[4] Foliations, I, 23, Amer. Math. Soc. (2000) | DOI
, ,[5] Poincaré–Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc. 265 (1981) 181 | DOI
, ,[6] Every surface is a leaf, Topology 26 (1987) 265 | DOI
, ,[7] Uncountably many exotic R4’s in standard 4–space, J. Differential Geom. 35 (1992) 219 | DOI
, ,[8] Codimension one foliations of closed manifolds, Ann. of Math. 107 (1978) 403 | DOI
,[9] An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279 | DOI
,[10] The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 | DOI
,[11] Topology of 4–manifolds, 39, Princeton Univ. Press (1990)
, ,[12] A universal smoothing of four-space, J. Differential Geom. 24 (1986) 69 | DOI
, ,[13] Monopole equation and the –conjecture, Math. Res. Lett. 8 (2001) 279 | DOI
,[14] Ends of 4–manifolds, Topology Proc. 30 (2006) 223
,[15] Basic quadratic forms, 90, Amer. Math. Soc. (2008) | DOI
,[16] Une variété qui n’est pas une feuille, Topology 24 (1985) 67 | DOI
,[17] An infinite set of exotic R4’s, J. Differential Geom. 21 (1985) 283 | DOI
,[18] An exotic menagerie, J. Differential Geom. 37 (1993) 199 | DOI
,[19] 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) | DOI
, ,[20] Complete metrics of bounded curvature on noncompact manifolds, Arch. Math. Basel 31 (1978) 89 | DOI
,[21] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa 16 (1962) 367
,[22] Croissance des feuilletages presque sans holonomie, from: "Differential topology, foliations and Gelfand–Fuks cohomology" (editor P A Schweitzer), Lecture Notes in Math. 652, Springer (1978) 141 | DOI
,[23] Open manifolds which are nonrealizable as leaves, Kodai Math. J. 8 (1985) 112 | DOI
, , , ,[24] Characteristic invariants of noncompact Riemannian manifolds, Topology 23 (1984) 289 | DOI
,[25] Exotic smooth 4–manifolds and gerbes as geometry for quantum gravity, Acta Phys. Polon. B 40 (2009) 3079
,[26] Bounded geometry and leaves, Math. Nachr. 290 (2017) 1448 | DOI
, ,[27] Groups of circle diffeomorphisms, Univ. of Chicago Press (2011) | DOI
,[28] Geometry of leaves, Topology 20 (1981) 209 | DOI
, ,[29] Ends of maps, III : Dimensions 4 and 5, J. Differential Geom. 17 (1982) 503 | DOI
,[30] Riemannian manifolds not quasi-isometric to leaves in codimension one foliations, Ann. Inst. Fourier Grenoble 61 (2011) 1599 | DOI
,[31] A course in arithmetic, 7, Springer (1973) | DOI
,[32] Gauge theory on asymptotically periodic 4–manifolds, J. Differential Geom. 25 (1987) 363 | DOI
,[33] An invariant of smooth 4–manifolds, Geom. Topol. 1 (1997) 71 | DOI
,[34] Impossible metric conditions on exotic R4’s, Asian J. Math. 12 (2008) 285 | DOI
,[35] Differentiable manifolds, Ann. of Math. 37 (1936) 645 | DOI
,[36] An example of a 2–dimensional no leaf, from: "Geometric study of foliations" (editors T Mizutani, K Masuda, S Matsumoto, T Inaba, T Tsuboi, Y Mitsumatsu), World Sci. (1994) 475
,Cité par Sources :