Rigidity for convex-cocompact actions on rank-one symmetric spaces
Geometry & topology, Tome 22 (2018) no. 5, pp. 2757-2790.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

When Γ X is a convex-cocompact action of a discrete group on a noncompact rank-one symmetric space X, there is a natural lower bound for the Hausdorff dimension of the limit set Λ(Γ) X, given by the Ahlfors regular conformal dimension of Γ. We show that equality is achieved precisely when Γ stabilizes an isometric copy of some noncompact rank-one symmetric space in X on which it acts with compact quotient. This generalizes a theorem of Bonk and Kleiner, who proved it in the case that X is real hyperbolic.

To prove our main theorem, we study tangents of Lipschitz differentiability spaces that are embedded in a Carnot group G. We show that almost all tangents are isometric to a Carnot subgroup of G, at least when they are rectifiably connected. This extends a theorem of Cheeger, who proved it for PI spaces that are embedded in Euclidean space.

DOI : 10.2140/gt.2018.22.2757
Classification : 53C24, 53C35, 53C17, 53C23
Keywords: convex-cocompact action, rank-one symmetric space, Carnot group

David, Guy 1 ; Kinneberg, Kyle 2

1 Department of Mathematical Sciences, Ball State University, Muncie, IN, United States, Courant Institute of Mathematical Sciences, New York University, New York, NY
2 National Security Agency, Fort Meade, MD, United States, Department of Mathematics, Rice University, Houston, TX, United States
@article{GT_2018_22_5_a5,
     author = {David, Guy and Kinneberg, Kyle},
     title = {Rigidity for convex-cocompact actions on rank-one symmetric spaces},
     journal = {Geometry & topology},
     pages = {2757--2790},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.2757},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2757/}
}
TY  - JOUR
AU  - David, Guy
AU  - Kinneberg, Kyle
TI  - Rigidity for convex-cocompact actions on rank-one symmetric spaces
JO  - Geometry & topology
PY  - 2018
SP  - 2757
EP  - 2790
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2757/
DO  - 10.2140/gt.2018.22.2757
ID  - GT_2018_22_5_a5
ER  - 
%0 Journal Article
%A David, Guy
%A Kinneberg, Kyle
%T Rigidity for convex-cocompact actions on rank-one symmetric spaces
%J Geometry & topology
%D 2018
%P 2757-2790
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2757/
%R 10.2140/gt.2018.22.2757
%F GT_2018_22_5_a5
David, Guy; Kinneberg, Kyle. Rigidity for convex-cocompact actions on rank-one symmetric spaces. Geometry & topology, Tome 22 (2018) no. 5, pp. 2757-2790. doi : 10.2140/gt.2018.22.2757. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2757/

[1] D Bate, Structure of measures in Lipschitz differentiability spaces, J. Amer. Math. Soc. 28 (2015) 421 | DOI

[2] D Bate, S Li, Differentiability and Poincaré-type inequalities in metric measure spaces, preprint (2015)

[3] D Bate, S Li, Characterizations of rectifiable metric measure spaces, Ann. Sci. Éc. Norm. Supér. 50 (2017) 1 | DOI

[4] D Bate, G Speight, Differentiability, porosity and doubling in metric measure spaces, Proc. Amer. Math. Soc. 141 (2013) 971 | DOI

[5] S Bates, W B Johnson, J Lindenstrauss, D Preiss, G Schechtman, Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. 9 (1999) 1092 | DOI

[6] M Bonk, B Kleiner, Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002) 81 | DOI

[7] M Bonk, B Kleiner, Rigidity for quasi-Fuchsian actions on negatively curved spaces, Int. Math. Res. Not. 2004 (2004) 3309 | DOI

[8] M Bonk, B Kleiner, Conformal dimension and Gromov hyperbolic groups with 2–sphere boundary, Geom. Topol. 9 (2005) 219 | DOI

[9] M Bourdon, Structure conforme au bord et flot géodésique d’un CAT(−1)–espace, Enseign. Math. 41 (1995) 63

[10] M Bourdon, Sur le birapport au bord des CAT(−1)–espaces, Inst. Hautes Études Sci. Publ. Math. 83 (1996) 95 | DOI

[11] M Bourdon, H Pajot, Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc. 127 (1999) 2315 | DOI

[12] R Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 11 | DOI

[13] M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI

[14] S V Buyalo, A M Kuznetsov, Boundary at infinity of rank-one symmetric spaces, Algebra i Analiz 21 (2009) 3

[15] L Capogna, M Cowling, Conformality and Q–harmonicity in Carnot groups, Duke Math. J. 135 (2006) 455 | DOI

[16] J Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428 | DOI

[17] J Cheeger, B Kleiner, Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon–Nikodým property, Geom. Funct. Anal. 19 (2009) 1017 | DOI

[18] J Cheeger, B Kleiner, A Schioppa, Infinitesimal structure of differentiability spaces, and metric differentiation, Anal. Geom. Metr. Spaces 4 (2016) 104 | DOI

[19] R Chow, Groups quasi-isometric to complex hyperbolic space, Trans. Amer. Math. Soc. 348 (1996) 1757 | DOI

[20] C Connell, Minimal Lyapunov exponents, quasiconformal structures, and rigidity of non-positively curved manifolds, Ergodic Theory Dynam. Systems 23 (2003) 429 | DOI

[21] M Coornaert, Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241 | DOI

[22] M G Cowling, A Ottazzi, Conformal maps of Carnot groups, Ann. Acad. Sci. Fenn. Math. 40 (2015) 203 | DOI

[23] G C David, Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces, Geom. Funct. Anal. 25 (2015) 553 | DOI

[24] O Guichard, Groupes plongés quasi isométriquement dans un groupe de Lie, Math. Ann. 330 (2004) 331 | DOI

[25] U Hamenstädt, A geometric characterization of negatively curved locally symmetric spaces, J. Differential Geom. 34 (1991) 193 | DOI

[26] J Heinonen, Lectures on analysis on metric spaces, Springer (2001) | DOI

[27] J Heinonen, P Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998) 1 | DOI

[28] J Heinonen, P Koskela, N Shanmugalingam, J T Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001) 87 | DOI

[29] D Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986) 503 | DOI

[30] W B Johnson, J Lindenstrauss, D Preiss, G Schechtman, Uniform quotient mappings of the plane, Michigan Math. J. 47 (2000) 15 | DOI

[31] I Kapovich, N Benakli, Boundaries of hyperbolic groups, from: "Combinatorial and geometric group theory" (editors S Cleary, R Gilman, A G Myasnikov, V Shpilrain), Contemp. Math. 296, Amer. Math. Soc. (2002) 39 | DOI

[32] S Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004) 271 | DOI

[33] S Keith, T Laakso, Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004) 1278 | DOI

[34] S Keith, X Zhong, The Poincaré inequality is an open ended condition, Ann. of Math. 167 (2008) 575 | DOI

[35] K Kinneberg, Rigidity for quasi-Möbius actions on fractal metric spaces, J. Differential Geom. 100 (2015) 349 | DOI

[36] B Kleiner, J M Mackay, Differentiable structures on metric measure spaces: a primer, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2016) 41 | DOI

[37] A Korányi, H M Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985) 309 | DOI

[38] R Korte, N Marola, N Shanmugalingam, Quasiconformality, homeomorphisms between metric measure spaces preserving quasiminimizers, and uniform density property, Ark. Mat. 50 (2012) 111 | DOI

[39] E Le Donne, Metric spaces with unique tangents, Ann. Acad. Sci. Fenn. Math. 36 (2011) 683 | DOI

[40] J M Mackay, J T Tyson, Conformal dimension: theory and application, 54, Amer. Math. Soc. (2010) | DOI

[41] R Montgomery, A tour of subriemannian geometries, their geodesics and applications, 91, Amer. Math. Soc. (2002) | DOI

[42] P Pansu, Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989) 177 | DOI

[43] P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 | DOI

[44] A Schioppa, Derivations and Alberti representations, preprint (2013)

[45] A Schioppa, Derivations and Alberti representations, Adv. Math. 293 (2016) 436 | DOI

[46] K Tan, X Yang, Subriemannian geodesics of Carnot groups of step 3, ESAIM Control Optim. Calc. Var. 19 (2013) 274 | DOI

[47] P Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986) 318 | DOI

[48] J Väisälä, Quasi-Möbius maps, J. Analyse Math. 44 (1984/85) 218 | DOI

Cité par Sources :