Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
When is a convex-cocompact action of a discrete group on a noncompact rank-one symmetric space , there is a natural lower bound for the Hausdorff dimension of the limit set , given by the Ahlfors regular conformal dimension of . We show that equality is achieved precisely when stabilizes an isometric copy of some noncompact rank-one symmetric space in on which it acts with compact quotient. This generalizes a theorem of Bonk and Kleiner, who proved it in the case that is real hyperbolic.
To prove our main theorem, we study tangents of Lipschitz differentiability spaces that are embedded in a Carnot group . We show that almost all tangents are isometric to a Carnot subgroup of , at least when they are rectifiably connected. This extends a theorem of Cheeger, who proved it for PI spaces that are embedded in Euclidean space.
David, Guy 1 ; Kinneberg, Kyle 2
@article{GT_2018_22_5_a5, author = {David, Guy and Kinneberg, Kyle}, title = {Rigidity for convex-cocompact actions on rank-one symmetric spaces}, journal = {Geometry & topology}, pages = {2757--2790}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2018}, doi = {10.2140/gt.2018.22.2757}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2757/} }
TY - JOUR AU - David, Guy AU - Kinneberg, Kyle TI - Rigidity for convex-cocompact actions on rank-one symmetric spaces JO - Geometry & topology PY - 2018 SP - 2757 EP - 2790 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2757/ DO - 10.2140/gt.2018.22.2757 ID - GT_2018_22_5_a5 ER -
David, Guy; Kinneberg, Kyle. Rigidity for convex-cocompact actions on rank-one symmetric spaces. Geometry & topology, Tome 22 (2018) no. 5, pp. 2757-2790. doi : 10.2140/gt.2018.22.2757. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2757/
[1] Structure of measures in Lipschitz differentiability spaces, J. Amer. Math. Soc. 28 (2015) 421 | DOI
,[2] Differentiability and Poincaré-type inequalities in metric measure spaces, preprint (2015)
, ,[3] Characterizations of rectifiable metric measure spaces, Ann. Sci. Éc. Norm. Supér. 50 (2017) 1 | DOI
, ,[4] Differentiability, porosity and doubling in metric measure spaces, Proc. Amer. Math. Soc. 141 (2013) 971 | DOI
, ,[5] Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. 9 (1999) 1092 | DOI
, , , , ,[6] Rigidity for quasi-Möbius group actions, J. Differential Geom. 61 (2002) 81 | DOI
, ,[7] Rigidity for quasi-Fuchsian actions on negatively curved spaces, Int. Math. Res. Not. 2004 (2004) 3309 | DOI
, ,[8] Conformal dimension and Gromov hyperbolic groups with 2–sphere boundary, Geom. Topol. 9 (2005) 219 | DOI
, ,[9] Structure conforme au bord et flot géodésique d’un CAT(−1)–espace, Enseign. Math. 41 (1995) 63
,[10] Sur le birapport au bord des CAT(−1)–espaces, Inst. Hautes Études Sci. Publ. Math. 83 (1996) 95 | DOI
,[11] Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc. 127 (1999) 2315 | DOI
, ,[12] Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 11 | DOI
,[13] The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI
, , , ,[14] Boundary at infinity of rank-one symmetric spaces, Algebra i Analiz 21 (2009) 3
, ,[15] Conformality and Q–harmonicity in Carnot groups, Duke Math. J. 135 (2006) 455 | DOI
, ,[16] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428 | DOI
,[17] Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon–Nikodým property, Geom. Funct. Anal. 19 (2009) 1017 | DOI
, ,[18] Infinitesimal structure of differentiability spaces, and metric differentiation, Anal. Geom. Metr. Spaces 4 (2016) 104 | DOI
, , ,[19] Groups quasi-isometric to complex hyperbolic space, Trans. Amer. Math. Soc. 348 (1996) 1757 | DOI
,[20] Minimal Lyapunov exponents, quasiconformal structures, and rigidity of non-positively curved manifolds, Ergodic Theory Dynam. Systems 23 (2003) 429 | DOI
,[21] Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241 | DOI
,[22] Conformal maps of Carnot groups, Ann. Acad. Sci. Fenn. Math. 40 (2015) 203 | DOI
, ,[23] Tangents and rectifiability of Ahlfors regular Lipschitz differentiability spaces, Geom. Funct. Anal. 25 (2015) 553 | DOI
,[24] Groupes plongés quasi isométriquement dans un groupe de Lie, Math. Ann. 330 (2004) 331 | DOI
,[25] A geometric characterization of negatively curved locally symmetric spaces, J. Differential Geom. 34 (1991) 193 | DOI
,[26] Lectures on analysis on metric spaces, Springer (2001) | DOI
,[27] Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998) 1 | DOI
, ,[28] Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001) 87 | DOI
, , , ,[29] The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986) 503 | DOI
,[30] Uniform quotient mappings of the plane, Michigan Math. J. 47 (2000) 15 | DOI
, , , ,[31] Boundaries of hyperbolic groups, from: "Combinatorial and geometric group theory" (editors S Cleary, R Gilman, A G Myasnikov, V Shpilrain), Contemp. Math. 296, Amer. Math. Soc. (2002) 39 | DOI
, ,[32] A differentiable structure for metric measure spaces, Adv. Math. 183 (2004) 271 | DOI
,[33] Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004) 1278 | DOI
, ,[34] The Poincaré inequality is an open ended condition, Ann. of Math. 167 (2008) 575 | DOI
, ,[35] Rigidity for quasi-Möbius actions on fractal metric spaces, J. Differential Geom. 100 (2015) 349 | DOI
,[36] Differentiable structures on metric measure spaces: a primer, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (2016) 41 | DOI
, ,[37] Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985) 309 | DOI
, ,[38] Quasiconformality, homeomorphisms between metric measure spaces preserving quasiminimizers, and uniform density property, Ark. Mat. 50 (2012) 111 | DOI
, , ,[39] Metric spaces with unique tangents, Ann. Acad. Sci. Fenn. Math. 36 (2011) 683 | DOI
,[40] Conformal dimension: theory and application, 54, Amer. Math. Soc. (2010) | DOI
, ,[41] A tour of subriemannian geometries, their geodesics and applications, 91, Amer. Math. Soc. (2002) | DOI
,[42] Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989) 177 | DOI
,[43] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1 | DOI
,[44] Derivations and Alberti representations, preprint (2013)
,[45] Derivations and Alberti representations, Adv. Math. 293 (2016) 436 | DOI
,[46] Subriemannian geodesics of Carnot groups of step 3, ESAIM Control Optim. Calc. Var. 19 (2013) 274 | DOI
, ,[47] On quasiconformal groups, J. Analyse Math. 46 (1986) 318 | DOI
,[48] Quasi-Möbius maps, J. Analyse Math. 44 (1984/85) 218 | DOI
,Cité par Sources :