Tori detect invertibility of topological field theories
Geometry & topology, Tome 22 (2018) no. 5, pp. 2713-2756.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A once extended d–dimensional topological field theory Z is a symmetric monoidal functor (taking values in a chosen target symmetric monoidal (,2)–category) assigning values to (d2)–manifolds, (d1)–manifolds, and d–manifolds. We show that if Z is at least once extended and the value assigned to the (d1)–torus is invertible, then the entire topological field theory is invertible, that is, it factors through the maximal Picard –category of the target. Similar results are shown to hold in the presence of arbitrary tangential structures.

DOI : 10.2140/gt.2018.22.2713
Classification : 18D05, 57R15, 57R56, 57R65, 81T45
Keywords: topological field theory, dimensional reduction, invertible

Schommer-Pries, Christopher 1

1 Department of Mathematics, University of Notre Dame, Notre Dame, IN, United States
@article{GT_2018_22_5_a4,
     author = {Schommer-Pries, Christopher},
     title = {Tori detect invertibility of topological field theories},
     journal = {Geometry & topology},
     pages = {2713--2756},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.2713},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2713/}
}
TY  - JOUR
AU  - Schommer-Pries, Christopher
TI  - Tori detect invertibility of topological field theories
JO  - Geometry & topology
PY  - 2018
SP  - 2713
EP  - 2756
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2713/
DO  - 10.2140/gt.2018.22.2713
ID  - GT_2018_22_5_a4
ER  - 
%0 Journal Article
%A Schommer-Pries, Christopher
%T Tori detect invertibility of topological field theories
%J Geometry & topology
%D 2018
%P 2713-2756
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2713/
%R 10.2140/gt.2018.22.2713
%F GT_2018_22_5_a4
Schommer-Pries, Christopher. Tori detect invertibility of topological field theories. Geometry & topology, Tome 22 (2018) no. 5, pp. 2713-2756. doi : 10.2140/gt.2018.22.2713. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2713/

[1] M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 | DOI

[2] J C Baez, J Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995) 6073 | DOI

[3] B Bartlett, C Douglas, C Schommer-Pries, J Vicary, Modular categories as representations of the 3–dimensional bordism 2–category, preprint (2015)

[4] C Barwick, C J Schommer-Pries, On the unicity of the homotopy theory of higher categories, preprint (2011)

[5] J Bénabou, Introduction to bicategories, from: "Reports of the Midwest Category Seminar" (editors A Dold, B Eckmann), Springer (1967) 1 | DOI

[6] M Bökstedt, I Madsen, The cobordism category and Waldhausen’s K–theory, from: "An alpine expedition through algebraic topology" (editors C Ausoni, K Hess, B Johnson, W Lück, J Scherer), Contemp. Math. 617, Amer. Math. Soc. (2014) 39 | DOI

[7] D Calaque, C Scheimbauer, A note on the (∞,n)–category of cobordisms, preprint (2015)

[8] L Crane, L H Kauffman, D Yetter, Evaluating the Crane–Yetter invariant, from: "Quantum topology" (editors L H Kauffman, R A Baadhio), Ser. Knots Everything 3, World Scientific (1993) 131 | DOI

[9] L Crane, L H Kauffman, D N Yetter, State-sum invariants of 4–manifolds, J. Knot Theory Ramifications 6 (1997) 177 | DOI

[10] L Crane, D Yetter, A categorical construction of 4D topological quantum field theories, from: "Quantum topology" (editors L H Kauffman, R A Baadhio), Ser. Knots Everything 3, World Scientific (1993) 120 | DOI

[11] C L Douglas, C J Schommer-Pries, N Snyder, Dualizable tensor categories, preprint (2013)

[12] M Feshbach, A A Voronov, A higher category of cobordisms and topological quantum field theory, preprint (2011)

[13] D S Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994) 343 | DOI

[14] D S Freed, 4-3-2-8-7-6, talk slides (2012)

[15] D S Freed, Anomalies and invertible field theories, from: "String-Math 2013" (editors R Donagi, M R Douglas, L Kamenova, M Roček), Proc. Sympos. Pure Math. 88, Amer. Math. Soc. (2014) 25 | DOI

[16] D S Freed, Short-range entanglement and invertible field theories, preprint (2014)

[17] D S Freed, M J Hopkins, J Lurie, C Teleman, Topological quantum field theories from compact Lie groups, from: "A celebration of the mathematical legacy of Raoul Bott" (editor P R Kotiuga), CRM Proc. Lecture Notes 50, Amer. Math. Soc. (2010) 367

[18] D S Freed, C Teleman, Relative quantum field theory, Comm. Math. Phys. 326 (2014) 459 | DOI

[19] S Galatius, U Tillmann, I Madsen, M Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009) 195 | DOI

[20] S Gunningham, Spin Hurwitz numbers and topological quantum field theory, Geom. Topol. 20 (2016) 1859 | DOI

[21] C M Jian, Examples of (n+1)–D TQFT with 1–dimensional Hilbert spaces on n–torus and n–sphere but higher-dimensional Hilbert spaces on other n–manifolds, MathOverflow (2015)

[22] A Kapustin, Topological field theory, higher categories, and their applications, from: "Proceedings of the International Congress of Mathematicians, III" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 2021

[23] A Kapustin, A Turzillo, Equivariant topological quantum field theory and symmetry protected topological phases, J. High Energy Phys. (2017) | DOI

[24] T Kerler, V V Lyubashenko, Non-semisimple topological quantum field theories for 3–manifolds with corners, 1765, Springer (2001) | DOI

[25] R J Lawrence, Triangulations, categories and extended topological field theories, from: "Quantum topology" (editors L H Kauffman, R A Baadhio), Ser. Knots Everything 3, World Scientific (1993) 191 | DOI

[26] J Lurie, On the classification of topological field theories, from: "Current developments in mathematics, 2008" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2009) 129

[27] M Müger, Galois theory for braided tensor categories and the modular closure, Adv. Math. 150 (2000) 151 | DOI

[28] H Nguyen, Higher bordism categories, Master’s thesis, Universität Bonn (2014)

[29] P Pstrągowski, On dualizable objects in monoidal bicategories, framed surfaces and the cobordism hypothesis, preprint (2014)

[30] O Randal-Williams, Embedded cobordism categories and spaces of submanifolds, Int. Math. Res. Not. 2011 (2011) 572 | DOI

[31] J Roberts, Skein theory and Turaev–Viro invariants, Topology 34 (1995) 771 | DOI

[32] C Scheimbauer, Factorization homology as a fully extended topological field theory, Doctoral thesis, ETH Zürich (2014)

[33] C J Schommer-Pries, The classification of two-dimensional extended topological field theories, PhD thesis, University of California, Berkeley (2009)

[34] C Schommer-Pries, Invertible topological field theories, preprint (2017)

[35] G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 421

[36] G Segal, Locality of holomorphic bundles, and locality in quantum field theory, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 164 | DOI

[37] S Stolz, P Teichner, Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 | DOI

[38] Y Tsumura, A 2–categorical extension of the Reshetikhin–Turaev theory, J. Pure Appl. Algebra 219 (2015) 4953 | DOI

[39] K Walker, Topological quantum field theories, preprint (2006)

[40] K Walker, Premodular TQFTs, talk slides (2014)

[41] K Walker, Z Wang, (3+1)–TQFTs and topological insulators, preprint (2011)

Cité par Sources :