Real line arrangements with the Hirzebruch property
Geometry & topology, Tome 22 (2018) no. 5, pp. 2697-2711.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A line arrangement of 3n lines in P2 satisfies the Hirzebruch property if each line intersect others in n + 1 points. Hirzebruch asked in 1985 if all such arrangements are related to finite complex reflection groups. We give a positive answer to this question in the case when the line arrangement in P2 is real, confirming that there exist exactly four such arrangements.

DOI : 10.2140/gt.2018.22.2697
Classification : 14N20, 32S22, 51F15, 52B70, 53C55, 20F55, 32Q15
Keywords: line arrangements, complex reflection groups, polyhedral manifolds, Kähler metrics

Panov, Dmitri 1

1 Department of Mathematics, King’s College London, London, United Kingdom
@article{GT_2018_22_5_a3,
     author = {Panov, Dmitri},
     title = {Real line arrangements with the {Hirzebruch} property},
     journal = {Geometry & topology},
     pages = {2697--2711},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.2697},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2697/}
}
TY  - JOUR
AU  - Panov, Dmitri
TI  - Real line arrangements with the Hirzebruch property
JO  - Geometry & topology
PY  - 2018
SP  - 2697
EP  - 2711
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2697/
DO  - 10.2140/gt.2018.22.2697
ID  - GT_2018_22_5_a3
ER  - 
%0 Journal Article
%A Panov, Dmitri
%T Real line arrangements with the Hirzebruch property
%J Geometry & topology
%D 2018
%P 2697-2711
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2697/
%R 10.2140/gt.2018.22.2697
%F GT_2018_22_5_a3
Panov, Dmitri. Real line arrangements with the Hirzebruch property. Geometry & topology, Tome 22 (2018) no. 5, pp. 2697-2711. doi : 10.2140/gt.2018.22.2697. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2697/

[1] G Barthel, F Hirzebruch, T Höfer, Geradenkonfigurationen und Algebraische Flächen, D4, Vieweg (1987) | DOI

[2] B Grünbaum, Arrangements of hyperplanes, from: "Proceedings of the second Louisiana conference on combinatorics, graph theory and computing" (editors R C Mullin, K B Reid, D P Roselle, R S D Thomas), Louisiana State Univ. (1971) 41

[3] B Grünbaum, Arrangements and spreads, 10, Amer. Math. Soc. (1972)

[4] F Hirzebruch, Arrangements of lines and algebraic surfaces, from: "Arithmetic and geometry" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 113 | DOI

[5] F Hirzebruch, Algebraic surfaces with extremal Chern numbers, Uspekhi Mat. Nauk 40 (1985) 121

[6] D Marín, J V Pereira, Rigid flat webs on the projective plane, Asian J. Math. 17 (2013) 163 | DOI

[7] D Panov, Polyhedral Kähler manifolds, Geom. Topol. 13 (2009) 2205 | DOI

[8] D Panov, A Petrunin, Ramification conjecture and Hirzebruch’s property of line arrangements, Compos. Math. 152 (2016) 2443 | DOI

[9] J V Pereira, Convex foliations, preprint

Cité par Sources :