Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A line arrangement of lines in satisfies the Hirzebruch property if each line intersect others in points. Hirzebruch asked in 1985 if all such arrangements are related to finite complex reflection groups. We give a positive answer to this question in the case when the line arrangement in is real, confirming that there exist exactly four such arrangements.
Panov, Dmitri 1
@article{GT_2018_22_5_a3, author = {Panov, Dmitri}, title = {Real line arrangements with the {Hirzebruch} property}, journal = {Geometry & topology}, pages = {2697--2711}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2018}, doi = {10.2140/gt.2018.22.2697}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2697/} }
Panov, Dmitri. Real line arrangements with the Hirzebruch property. Geometry & topology, Tome 22 (2018) no. 5, pp. 2697-2711. doi : 10.2140/gt.2018.22.2697. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2697/
[1] Geradenkonfigurationen und Algebraische Flächen, D4, Vieweg (1987) | DOI
, , ,[2] Arrangements of hyperplanes, from: "Proceedings of the second Louisiana conference on combinatorics, graph theory and computing" (editors R C Mullin, K B Reid, D P Roselle, R S D Thomas), Louisiana State Univ. (1971) 41
,[3] Arrangements and spreads, 10, Amer. Math. Soc. (1972)
,[4] Arrangements of lines and algebraic surfaces, from: "Arithmetic and geometry" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 113 | DOI
,[5] Algebraic surfaces with extremal Chern numbers, Uspekhi Mat. Nauk 40 (1985) 121
,[6] Rigid flat webs on the projective plane, Asian J. Math. 17 (2013) 163 | DOI
, ,[7] Polyhedral Kähler manifolds, Geom. Topol. 13 (2009) 2205 | DOI
,[8] Ramification conjecture and Hirzebruch’s property of line arrangements, Compos. Math. 152 (2016) 2443 | DOI
, ,[9] Convex foliations, preprint
,Cité par Sources :