Alexander and Thurston norms, and the Bieri–Neumann–Strebel invariants for free-by-cyclic groups
Geometry & topology, Tome 22 (2018) no. 5, pp. 2647-2696.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We investigate Friedl and Lück’s universal L2–torsion for descending HNN extensions of finitely generated free groups, and so in particular for Fn-by- groups. This invariant induces a seminorm on the first cohomology of the group which is an analogue of the Thurston norm for 3–manifold groups.

We prove that this Thurston seminorm is an upper bound for the Alexander seminorm defined by McMullen, as well as for the higher Alexander seminorms defined by Harvey. The same inequalities are known to hold for 3–manifold groups.

We also prove that the Newton polytopes of the universal L2–torsion of a descending HNN extension of F2 locally determine the Bieri–Neumann–Strebel invariant of the group. We give an explicit means of computing the BNS invariant for such groups. As a corollary, we prove that the Bieri–Neumann–Strebel invariant of a descending HNN extension of F2 has finitely many connected components.

When the HNN extension is taken over Fn along a polynomially growing automorphism with unipotent image in GL(n, ), we show that the Newton polytope of the universal L2–torsion and the BNS invariant completely determine one another. We also show that in this case the Alexander norm, its higher incarnations and the Thurston norm all coincide.

DOI : 10.2140/gt.2018.22.2647
Classification : 20F65, 16S85, 20E06
Keywords: free-by-cyclic groups, ascending HNN extensions of free groups, BNS invariants, Thurston norm, Alexander norm

Funke, Florian 1 ; Kielak, Dawid 2

1 Mathematisches Institut, Universität Bonn, Bonn, Germany
2 Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
@article{GT_2018_22_5_a2,
     author = {Funke, Florian and Kielak, Dawid},
     title = {Alexander and {Thurston} norms, and the {Bieri{\textendash}Neumann{\textendash}Strebel} invariants for free-by-cyclic groups},
     journal = {Geometry & topology},
     pages = {2647--2696},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.2647},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2647/}
}
TY  - JOUR
AU  - Funke, Florian
AU  - Kielak, Dawid
TI  - Alexander and Thurston norms, and the Bieri–Neumann–Strebel invariants for free-by-cyclic groups
JO  - Geometry & topology
PY  - 2018
SP  - 2647
EP  - 2696
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2647/
DO  - 10.2140/gt.2018.22.2647
ID  - GT_2018_22_5_a2
ER  - 
%0 Journal Article
%A Funke, Florian
%A Kielak, Dawid
%T Alexander and Thurston norms, and the Bieri–Neumann–Strebel invariants for free-by-cyclic groups
%J Geometry & topology
%D 2018
%P 2647-2696
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2647/
%R 10.2140/gt.2018.22.2647
%F GT_2018_22_5_a2
Funke, Florian; Kielak, Dawid. Alexander and Thurston norms, and the Bieri–Neumann–Strebel invariants for free-by-cyclic groups. Geometry & topology, Tome 22 (2018) no. 5, pp. 2647-2696. doi : 10.2140/gt.2018.22.2647. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2647/

[1] J W Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928) 275 | DOI

[2] L Bartholdi, Amenability of groups is characterized by Myhill’s theorem, with an appendix by D Kielak, preprint (2016)

[3] M Bestvina, M Feighn, M Handel, The Tits alternative for Out(Fn), I : Dynamics of exponentially-growing automorphisms, Ann. of Math. 151 (2000) 517 | DOI

[4] R Bieri, W D Neumann, R Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451 | DOI

[5] C H Cashen, G Levitt, Mapping tori of free group automorphisms, and the Bieri–Neumann–Strebel invariant of graphs of groups, J. Group Theory 19 (2016) 191 | DOI

[6] J C Cha, S Friedl, F Funke, The Grothendieck group of polytopes and norms, Münster J. Math. 10 (2017) 75

[7] M Clay, l2–torsion of free-by-cyclic groups, Q. J. Math. 68 (2017) 617 | DOI

[8] P M Cohn, Free ideal rings and localization in general rings, 3, Cambridge Univ. Press (2006) | DOI

[9] W Dicks, P Menal, The group rings that are semifirs, J. London Math. Soc. 19 (1979) 288 | DOI

[10] J Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943) 27

[11] J Dubois, S Friedl, W Lück, The L2–Alexander torsion of 3–manifolds, preprint (2014)

[12] N M Dunfield, Alexander and Thurston norms of fibered 3–manifolds, Pacific J. Math. 200 (2001) 43 | DOI

[13] R H Fox, Free differential calculus, I : Derivation in the free group ring, Ann. of Math. 57 (1953) 547 | DOI

[14] S Friedl, W Lück, The L2–torsion function and the Thurston norm of 3–manifolds, preprint (2015)

[15] S Friedl, W Lück, L2–Euler characteristics and the Thurston norm, preprint (2016)

[16] S Friedl, W Lück, Universal L2–torsion, polytopes and applications to 3–manifolds, Proc. Lond. Math. Soc. 114 (2017) 1114 | DOI

[17] S Friedl, S Tillmann, Two-generator one-relator groups and marked polytopes, preprint (2015)

[18] F Funke, The integral polytope group, preprint (2016)

[19] F Funke, The L2–torsion polytope of amenable groups, preprint (2017)

[20] R Geoghegan, M L Mihalik, M Sapir, D T Wise, Ascending HNN extensions of finitely generated free groups are Hopfian, Bull. London Math. Soc. 33 (2001) 292 | DOI

[21] M Hall Jr., Subgroups of finite index in free groups, Canadian J. Math. 1 (1949) 187 | DOI

[22] S L Harvey, Higher-order polynomial invariants of 3–manifolds giving lower bounds for the Thurston norm, Topology 44 (2005) 895 | DOI

[23] S L Harvey, Monotonicity of degrees of generalized Alexander polynomials of groups and 3–manifolds, Math. Proc. Cambridge Philos. Soc. 140 (2006) 431 | DOI

[24] S Harvey, S Friedl, Non-commutative multivariable Reidemester torsion and the Thurston norm, Algebr. Geom. Topol. 7 (2007) 755 | DOI

[25] G Higman, The units of group-rings, Proc. London Math. Soc. 46 (1940) 231 | DOI

[26] D H Kochloukova, Some Novikov rings that are von Neumann finite and knot-like groups, Comment. Math. Helv. 81 (2006) 931 | DOI

[27] P Linnell, W Lück, Localization, Whitehead groups, and the Atiyah conjecture, preprint (2016)

[28] W Lück, L2–invariants : theory and applications to geometry and K–theory, 44, Springer (2002) | DOI

[29] W Lück, Twisting L2–invariants with finite-dimensional representations, preprint (2015)

[30] W Lück, T Schick, L2–torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal. 9 (1999) 518 | DOI

[31] A I Mal’Cev, On the embedding of group algebras in division algebras, Doklady Akad. Nauk SSSR 60 (1948) 1499

[32] C T Mcmullen, The Alexander polynomial of a 3–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. 35 (2002) 153 | DOI

[33] B H Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949) 202 | DOI

[34] J C Sikorav, Homologie de Novikov associée à une classe de cohomologie réelle de degré un, Thèse d’Etat, Universit’e Paris-Sud XI, Orsay (1987)

[35] J R Silvester, Introduction to algebraic K–theory, Chapman Hall (1981)

[36] J R Stallings, Topology of finite graphs, Invent. Math. 71 (1983) 551 | DOI

[37] R Strebel, Notes on the Sigma invariants, preprint (2012)

[38] D Tamari, A refined classification of semi-groups leading to generalized polynomial rings with a generalized degree concept, from: "Proceedings of the International Congress of Mathematicians" (editors J C H Gerretsen, J d Groot), North-Holland (1957) 439

[39] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339, Amer. Math. Soc. (1986) 99 | DOI

[40] F Waldhausen, Algebraic K–theory of generalized free products, III, IV, Ann. of Math. 108 (1978) 205 | DOI

[41] C Wegner, The Farrell–Jones conjecture for virtually solvable groups, J. Topol. 8 (2015) 975 | DOI

Cité par Sources :