Finsler bordifications of symmetric and certain locally symmetric spaces
Geometry & topology, Tome 22 (2018) no. 5, pp. 2533-2646.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a geometric interpretation of the maximal Satake compactification of symmetric spaces X = GK of noncompact type, showing that it arises by attaching the horofunction boundary for a suitable G–invariant Finsler metric on X. As an application, we establish the existence of natural bordifications, as orbifolds-with-corners, of locally symmetric spaces XΓ for arbitrary discrete subgroups Γ < G. These bordifications result from attaching Γ–quotients of suitable domains of proper discontinuity at infinity. We further prove that such bordifications are compactifications in the case of Anosov subgroups. We show, conversely, that Anosov subgroups are characterized by the existence of such compactifications among uniformly regular subgroups. Along the way, we give a positive answer, in the torsion-free case, to a question of Haïssinsky and Tukia on convergence groups regarding the cocompactness of their actions on the domains of discontinuity.

DOI : 10.2140/gt.2018.22.2533
Classification : 20F65, 22E40, 53C35, 51E24, 53B40
Keywords: discrete groups, Finsler geometry

Kapovich, Michael 1 ; Leeb, Bernhard 2

1 MK: Department of Mathematics, University of California, Davis, Davis, CA, United States, MK: Korea Institute for Advanced Study, Seoul, South Korea
2 BL: Mathematisches Institut, Universität München, München, Germany
@article{GT_2018_22_5_a1,
     author = {Kapovich, Michael and Leeb, Bernhard},
     title = {Finsler bordifications of symmetric and certain locally symmetric spaces},
     journal = {Geometry & topology},
     pages = {2533--2646},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.2533},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2533/}
}
TY  - JOUR
AU  - Kapovich, Michael
AU  - Leeb, Bernhard
TI  - Finsler bordifications of symmetric and certain locally symmetric spaces
JO  - Geometry & topology
PY  - 2018
SP  - 2533
EP  - 2646
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2533/
DO  - 10.2140/gt.2018.22.2533
ID  - GT_2018_22_5_a1
ER  - 
%0 Journal Article
%A Kapovich, Michael
%A Leeb, Bernhard
%T Finsler bordifications of symmetric and certain locally symmetric spaces
%J Geometry & topology
%D 2018
%P 2533-2646
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2533/
%R 10.2140/gt.2018.22.2533
%F GT_2018_22_5_a1
Kapovich, Michael; Leeb, Bernhard. Finsler bordifications of symmetric and certain locally symmetric spaces. Geometry & topology, Tome 22 (2018) no. 5, pp. 2533-2646. doi : 10.2140/gt.2018.22.2533. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2533/

[1] A Ash, D Mumford, M Rapoport, Y Tai, Smooth compactification of locally symmetric varieties, IV, Math. Sci. (1975) | DOI

[2] W L Baily Jr., A Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966) 442 | DOI

[3] W Ballmann, Lectures on spaces of nonpositive curvature, 25, Birkhäuser (1995) | DOI

[4] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, 61, Birkhäuser (1985) | DOI

[5] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI

[6] M Bestvina, G Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469 | DOI

[7] A Borel, Linear algebraic groups, 126, Springer (1991) | DOI

[8] A Borel, L Ji, Compactifications of symmetric and locally symmetric spaces, Birkhäuser (2006) | DOI

[9] A Borel, J P Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973) 436 | DOI

[10] B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245 | DOI

[11] B H Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229 | DOI

[12] B H Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998) 643 | DOI

[13] B H Bowditch, Convergence groups and configuration spaces, from: "Geometric group theory down under" (editors J Cossey, W D Neumann, M Shapiro), de Gruyter (1999) 23

[14] B Brill, Eine Familie von Kompaktifizierungen affiner Gebäude, dissertation, Goethe University Frankfurt (2006)

[15] C Chevalley, Sur les décompositions cellulaires des espaces G∕B, from: "Algebraic groups and their generalizations: classical methods" (editors W J Haboush, B J Parshall), Proc. Sympos. Pure Math. 56, Amer. Math. Soc. (1994) 1

[16] R J Daverman, Decompositions of manifolds, 124, Academic (1986)

[17] P B Eberlein, Geometry of nonpositively curved manifolds, Univ. of Chicago Press (1996)

[18] C Frances, Lorentzian Kleinian groups, Comment. Math. Helv. 80 (2005) 883 | DOI

[19] H Furstenberg, A Poisson formula for semisimple Lie groups, Ann. of Math. 77 (1963) 335 | DOI

[20] F W Gehring, G J Martin, Discrete convergence groups, from: "Complex analysis, I" (editor C A Berenstein), Lecture Notes in Math. 1275, Springer (1987) 158 | DOI

[21] M Gromov, Hyperbolic manifolds, groups and actions, from: "Riemann surfaces and related topics" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 183 | DOI

[22] B Grünbaum, Convex polytopes, 221, Springer (2003) | DOI

[23] O Guichard, F Kassel, A Wienhard, Tameness of Riemannian locally symmetric spaces arising from Anosov representations, preprint (2015)

[24] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[25] L Ji, A S Schilling, Polyhedral horofunction compactification as polyhedral ball, preprint (2016)

[26] D Joyce, D-manifolds, d-orbifolds and derived differential geometry: a detailed summary, preprint (2012)

[27] M Kapovich, B Leeb, Discrete isometry groups of symmetric spaces, preprint (2017)

[28] M Kapovich, B Leeb, J Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differential Geom. 81 (2009) 297 | DOI

[29] M Kapovich, B Leeb, J Porti, Dynamics at infinity of regular discrete subgroups of isometries of higher rank symmetric spaces, preprint (2013)

[30] M Kapovich, B Leeb, J Porti, Morse actions of discrete groups on symmetric space, preprint (2014)

[31] M Kapovich, B Leeb, J Porti, A Morse lemma for quasigeodesics in symmetric spaces and euclidean buildings, preprint (2014)

[32] M Kapovich, B Leeb, J Porti, Some recent results on Anosov representations, Transform. Groups 21 (2016) 1105 | DOI

[33] M Kapovich, B Leeb, J Porti, Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017) 808 | DOI

[34] M Kapovich, B Leeb, J Porti, Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol. 22 (2018) 157 | DOI

[35] A Karlsson, V Metz, G A Noskov, Horoballs in simplices and Minkowski spaces, Int. J. Math. Math. Sci. (2006) 1 | DOI

[36] F I Karpelevič, The geometry of geodesics and the eigenfunctions of the Beltrami–Laplace operator on symmetric spaces, Tr. Mosk. Mat. Obs. 14 (1965) 48

[37] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115

[38] B Kleiner, B Leeb, Rigidity of invariant convex sets in symmetric spaces, Invent. Math. 163 (2006) 657 | DOI

[39] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[40] A Marden, The geometry of finitely generated kleinian groups, Ann. of Math. 99 (1974) 383 | DOI

[41] J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974)

[42] S A Mitchell, Quillen’s theorem on buildings and the loops on a symmetric space, Enseign. Math. 34 (1988) 123

[43] S A Mitchell, Parabolic orbits in flag varieties, preprint (2008)

[44] C C Moore, Compactifications of symmetric spaces, II : The Cartan domains, Amer. J. Math. 86 (1964) 358 | DOI

[45] A Parreau, La distance vectorielle dans les immeubles affines et les espaces symétriques, in preparation

[46] J G Ratcliffe, Foundations of hyperbolic manifolds, 149, Springer (1994) | DOI

[47] I Satake, On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math. 72 (1960) 555 | DOI

[48] I Satake, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. 71 (1960) 77 | DOI

[49] E H Spanier, Algebraic topology, McGraw-Hill (1966) | DOI

[50] P Tukia, Convergence groups and Gromov’s metric hyperbolic spaces, New Zealand J. Math. 23 (1994) 157

[51] P Tukia, Conical limit points and uniform convergence groups, J. Reine Angew. Math. 501 (1998) 71 | DOI

[52] C Walsh, The horofunction boundary of finite-dimensional normed spaces, Math. Proc. Cambridge Philos. Soc. 142 (2007) 497 | DOI

[53] C Walsh, The horoboundary and isometry group of Thurston’s Lipschitz metric, from: "Handbook of Teichmüller theory, IV" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 19, Eur. Math. Soc. (2014) 327 | DOI

[54] G M Ziegler, Lectures on polytopes, 152, Springer (1995) | DOI

Cité par Sources :