On the unstable intersection conjecture
Geometry & topology, Tome 22 (2018) no. 5, pp. 2511-2532.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Compacta X and Y are said to admit a stable intersection in n if there are maps f : X n and g: Y n such that for every sufficiently close continuous approximations f: X n and g: Y n of f and g, we have f(X) g(Y ). The unstable intersection conjecture asserts that X and Y do not admit a stable intersection in n if and only if dimX × Y n 1. This conjecture was intensively studied and confirmed in many cases. we prove the unstable intersection conjecture in all the remaining cases except the case dimX = dimY = 3, dimX × Y = 4 and n = 5, which still remains open.

DOI : 10.2140/gt.2018.22.2511
Classification : 55M10, 54F45, 55N45
Keywords: cohomological dimension, extension theory

Levin, Michael 1

1 Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva, Israel
@article{GT_2018_22_5_a0,
     author = {Levin, Michael},
     title = {On the unstable intersection conjecture},
     journal = {Geometry & topology},
     pages = {2511--2532},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2018},
     doi = {10.2140/gt.2018.22.2511},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2511/}
}
TY  - JOUR
AU  - Levin, Michael
TI  - On the unstable intersection conjecture
JO  - Geometry & topology
PY  - 2018
SP  - 2511
EP  - 2532
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2511/
DO  - 10.2140/gt.2018.22.2511
ID  - GT_2018_22_5_a0
ER  - 
%0 Journal Article
%A Levin, Michael
%T On the unstable intersection conjecture
%J Geometry & topology
%D 2018
%P 2511-2532
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2511/
%R 10.2140/gt.2018.22.2511
%F GT_2018_22_5_a0
Levin, Michael. On the unstable intersection conjecture. Geometry & topology, Tome 22 (2018) no. 5, pp. 2511-2532. doi : 10.2140/gt.2018.22.2511. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2511/

[1] A N Dranishnikov, Homological dimension theory, Uspekhi Mat. Nauk 43 (1988) 11

[2] A N Dranishnikov, Extension of mappings into CW-complexes, Mat. Sb. 182 (1991) 1300

[3] A N Dranishnikov, On the mapping intersection problem, Pacific J. Math. 173 (1996) 403 | DOI

[4] A N Dranishnikov, On the dimension of the product of two compacta and the dimension of their intersection in general position in Euclidean space, Trans. Amer. Math. Soc. 352 (2000) 5599 | DOI

[5] A N Dranishnikov, Cohomological dimension theory of compact metric spaces, preprint (2005)

[6] A Dranishnikov, On Levin’s generalization of the plus construction, preprint (2014)

[7] A Dranishnikov, M Levin, Dimension of the product and classical formulae of dimension theory, Trans. Amer. Math. Soc. 366 (2014) 2683 | DOI

[8] A N Dranishnikov, J West, On compacta that intersect unstably in Euclidean space, Topology Appl. 43 (1992) 181 | DOI

[9] A N Dranišnikov, D Repovš, E V Ščepin, On intersections of compacta in Euclidean space : the metastable case, Tsukuba J. Math. 17 (1993) 549 | DOI

[10] J Dydak, Cohomological dimension and metrizable spaces, II, Trans. Amer. Math. Soc. 348 (1996) 1647 | DOI

[11] J Dydak, Algebra of dimension theory, Trans. Amer. Math. Soc. 358 (2006) 1537 | DOI

[12] J Dydak, M Levin, Maps to the projective plane, Algebr. Geom. Topol. 9 (2009) 549 | DOI

[13] J Dydak, M Levin, Extensions of maps to Moore spaces, Israel J. Math. 207 (2015) 981 | DOI

[14] V I Kuz’Minov, Homological dimension theory, Uspehi Mat. Nauk 23 (1968) 3

[15] M Levin, Constructing compacta of different extensional dimensions, Canad. Math. Bull. 44 (2001) 80 | DOI

[16] M Levin, Acyclic resolutions for arbitrary groups, Israel J. Math. 135 (2003) 193 | DOI

[17] D Mccullough, L R Rubin, Some m–dimensional compacta admitting a dense set of imbeddings into R2m, Fund. Math. 133 (1989) 237 | DOI

[18] W Olszewski, Completion theorem for cohomological dimensions, Proc. Amer. Math. Soc. 123 (1995) 2261 | DOI

[19] E V Shchepin, Arithmetic of dimension theory, Uspekhi Mat. Nauk 53 (1998) 115

[20] S Spież, H Toruńczyk, Moving compacta in Rm apart, Topology Appl. 41 (1991) 193 | DOI

[21] Y Sternfeld, A short elementary proof of the Dranishnikov–West theorem on stable intersection of compacta in Euclidean spaces, Topology Appl. 74 (1996) 177 | DOI

[22] Y Su, S Ye, Fundamental groups, homology equivalences and one-sided h–cobordisms, Sci. China Math. 58 (2015) 2003 | DOI

[23] M A Štan’Ko, The embedding of compacta in euclidean space, Mat. Sb. 83 (125) (1970) 234

Cité par Sources :