Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We classify the minimum-volume smooth complex hyperbolic surfaces that admit smooth toroidal compactifications, and we explicitly construct their compactifications. There are five such surfaces, and they are all arithmetic; ie they are associated with quotients of the ball by an arithmetic lattice. Moreover, the associated lattices are all commensurable. The first compactification, originally discovered by Hirzebruch, is the blowup of an abelian surface at one point. The others are bielliptic surfaces blown up at one point. The bielliptic examples are new and are the first known examples of smooth toroidal compactifications birational to bielliptic surfaces.
Di Cerbo, Luca 1 ; Stover, Matthew 2
@article{GT_2018_22_4_a13, author = {Di Cerbo, Luca and Stover, Matthew}, title = {Classification and arithmeticity of toroidal compactifications with 3c2 = c12 = 3}, journal = {Geometry & topology}, pages = {2465--2510}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, doi = {10.2140/gt.2018.22.2465}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2465/} }
TY - JOUR AU - Di Cerbo, Luca AU - Stover, Matthew TI - Classification and arithmeticity of toroidal compactifications with 3c2 = c12 = 3 JO - Geometry & topology PY - 2018 SP - 2465 EP - 2510 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2465/ DO - 10.2140/gt.2018.22.2465 ID - GT_2018_22_4_a13 ER -
%0 Journal Article %A Di Cerbo, Luca %A Stover, Matthew %T Classification and arithmeticity of toroidal compactifications with 3c2 = c12 = 3 %J Geometry & topology %D 2018 %P 2465-2510 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2465/ %R 10.2140/gt.2018.22.2465 %F GT_2018_22_4_a13
Di Cerbo, Luca; Stover, Matthew. Classification and arithmeticity of toroidal compactifications with 3c2 = c12 = 3. Geometry & topology, Tome 22 (2018) no. 4, pp. 2465-2510. doi : 10.2140/gt.2018.22.2465. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2465/
[1] Smooth compactifications of locally symmetric varieties, Cambridge Univ. Press (2010) | DOI
, , , ,[2] Sur les surfaces hyperelliptiques, C. R. Acad. Sci. Paris 145 (1908) 747
, ,[3] Compact complex surfaces, 4, Springer (2004) | DOI
, , , ,[4] Surfaces of general type with geometric genus zero: a survey, from: "Complex and differential geometry" (editors W Ebeling, K Hulek, K Smoczyk), Springer Proc. Math. 8, Springer (2011) 1 | DOI
, , ,[5] Complex algebraic surfaces, 34, Cambridge Univ. Press (1996) | DOI
,[6] Hyperbolic orbifolds of small volume, from: "Proceedings of the International Congress of Mathematicians, II : Invited lectures" (editors S Y Jang, Y R Kim, D W Lee, I Yie), Kyung Moon Sa (2014) 837
,[7] Compactifications of symmetric and locally symmetric spaces, 229, Birkhäuser (2006) | DOI
, ,[8] The Magma algebra system, I : The user language, J. Symbolic Comput. 24 (1997) 235 | DOI
, , ,[9] Enumeration of the 50 fake projective planes, C. R. Math. Acad. Sci. Paris 348 (2010) 11 | DOI
, ,[10] Tores et variétés abéliennes complexes, 6, Soc. Math. France (1999)
,[11] Commensurabilities among lattices in PU(1,n), 132, Princeton Univ. Press (1993) | DOI
, ,[12] Effective results for complex hyperbolic manifolds, J. Lond. Math. Soc. 91 (2015) 89 | DOI
, ,[13] Finite-volume complex-hyperbolic surfaces, their toroidal compactifications, and geometric applications, Pacific J. Math. 255 (2012) 305 | DOI
,[14] On the classification of toroidal compactifications with 3c2 = c12 and c2 = 1, preprint (2014)
,[15] Multiple realizations of varieties as ball quotient compactifications, Michigan Math. J. 65 (2016) 441 | DOI
, ,[16] Bielliptic ball quotient compactifications and lattices in PU(2,1) with finitely generated commutator subgroup, Ann. Inst. Fourier Grenoble 67 (2017) 315 | DOI
, ,[17] The geometry of the Eisenstein–Picard modular group, Duke Math. J. 131 (2006) 249 | DOI
, ,[18] Algebraic surfaces and holomorphic vector bundles, Springer (1998) | DOI
,[19] Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009) 1157 | DOI
, , ,[20] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5
,[21] Algebraic geometry, 52, Springer (1977) | DOI
,[22] Chern numbers of algebraic surfaces: an example, Math. Ann. 266 (1984) 351 | DOI
,[23] Chern numbers of algebraic surfaces—Hirzebruch’s examples are Picard modular surfaces, Math. Nachr. 126 (1986) 255 | DOI
,[24] Ball and surface arithmetics, 29, Vieweg (1998) | DOI
,[25] Complex hyperbolic surfaces of abelian type, Serdica Math. J. 30 (2004) 207
,[26] Rank one lattices whose parabolic isometries have no rotational part, Proc. Amer. Math. Soc. 126 (1998) 2453 | DOI
,[27] On deformations of compactifiable complex manifolds, Math. Ann. 235 (1978) 247 | DOI
,[28] Sur la rigidité de certains groupes fondamentaux, l’arithméticité des réseaux hyperboliques complexes, et les “faux plans projectifs”, Invent. Math. 153 (2003) 105 | DOI
,[29] On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977) 225 | DOI
,[30] Projective algebraicity of minimal compactifications of complex-hyperbolic space forms of finite volume, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 331 | DOI
,[31] Irregular ball-quotient surfaces with non-positive Kodaira dimension, Math. Res. Lett. 15 (2008) 1187 | DOI
,[32] Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977) 239 | DOI
,[33] An algebraic surface with K ample, (K2) = 9, pg = q = 0, Amer. J. Math. 101 (1979) 233 | DOI
,[34] Fake projective planes, Invent. Math. 168 (2007) 321 | DOI
, ,[35] Semistable curves on algebraic surfaces and logarithmic pluricanonical maps, Math. Ann. 254 (1980) 89 | DOI
,[36] Divisors of bielliptic surfaces and embeddings in P4, Math. Z. 203 (1990) 527 | DOI
,[37] Volumes of Picard modular surfaces, Proc. Amer. Math. Soc. 139 (2011) 3045 | DOI
,[38] Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, from: "Mathematical aspects of string theory" (editor S T Yau), Adv. Ser. Math. Phys. 1, World Scientific (1987) 574 | DOI
, ,[39] Arrangements of curves and algebraic surfaces, J. Algebraic Geom. 19 (2010) 335 | DOI
,[40] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 | DOI
,[41] Integrality and arithmeticity of co-compact lattice corresponding to certain complex two-ball quotients of Picard number one, Asian J. Math. 8 (2004) 107
,Cité par Sources :