Towers of regular self-covers and linear endomorphisms of tori
Geometry & topology, Tome 22 (2018) no. 4, pp. 2427-2464.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a closed manifold that admits a self-cover p: M M of degree > 1. We say p is strongly regular if all iterates pn: M M are regular covers. In this case, we establish an algebraic structure theorem for the fundamental group of M: We prove that π1(M) surjects onto a nontrivial free abelian group A, and the self-cover is induced by a linear endomorphism of A. Under further hypotheses we show that a finite cover of M admits the structure of a principal torus bundle. We show that this applies when M is Kähler and p is a strongly regular, holomorphic self-cover, and prove that a finite cover of M splits as a product with a torus factor.

DOI : 10.2140/gt.2018.22.2427
Classification : 57N99, 57S17, 20F50, 32Q15, 57S15
Keywords: self-cover, holomorphic endomorphism, scale-invariant group, expanding map

van Limbeek, Wouter 1

1 Department of Mathematics, University of Michigan, Ann Arbor, MI, United States
@article{GT_2018_22_4_a12,
     author = {van Limbeek, Wouter},
     title = {Towers of regular self-covers and linear endomorphisms of tori},
     journal = {Geometry & topology},
     pages = {2427--2464},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     doi = {10.2140/gt.2018.22.2427},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2427/}
}
TY  - JOUR
AU  - van Limbeek, Wouter
TI  - Towers of regular self-covers and linear endomorphisms of tori
JO  - Geometry & topology
PY  - 2018
SP  - 2427
EP  - 2464
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2427/
DO  - 10.2140/gt.2018.22.2427
ID  - GT_2018_22_4_a12
ER  - 
%0 Journal Article
%A van Limbeek, Wouter
%T Towers of regular self-covers and linear endomorphisms of tori
%J Geometry & topology
%D 2018
%P 2427-2464
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2427/
%R 10.2140/gt.2018.22.2427
%F GT_2018_22_4_a12
van Limbeek, Wouter. Towers of regular self-covers and linear endomorphisms of tori. Geometry & topology, Tome 22 (2018) no. 4, pp. 2427-2464. doi : 10.2140/gt.2018.22.2427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2427/

[1] C. Baumgartner, Kohomologie freier p–Torus-Operationen, Fak. f. Math. (1990)

[2] A Beauville, Endomorphisms of hypersurfaces and other manifolds, Internat. Math. Res. Notices (2001) 53 | DOI

[3] I Belegradek, On co-Hopfian nilpotent groups, Bull. London Math. Soc. 35 (2003) 805 | DOI

[4] I Biswas, On abelian principal bundles, Arch. Math. Basel 88 (2007) 164 | DOI

[5] A Blanchard, Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. 73 (1956) 157 | DOI

[6] W M Boothby, S Kobayashi, H C Wang, A note on mappings and automorphisms of almost complex manifolds, Ann. of Math. 77 (1963) 329 | DOI

[7] G Carlsson, On the homology of finite free (Z∕2)n–complexes, Invent. Math. 74 (1983) 139 | DOI

[8] F T Farrell, A Gogolev, Examples of expanding endomorphisms on fake tori, J. Topol. 7 (2014) 805 | DOI

[9] F T Farrell, W C Hsiang, The topological-Euclidean space form problem, Invent. Math. 45 (1978) 181 | DOI

[10] F T Farrell, L E Jones, Examples of expanding endomorphisms on exotic tori, Invent. Math. 45 (1978) 175 | DOI

[11] J Franks, Anosov diffeomorphisms, from: "Global analysis" (editors S S Chern, S Smale), Proc. Sympos. Pure Math. XIV, Amer. Math. Soc. (1970) 61

[12] M H Freedman, The disk theorem for four-dimensional manifolds, from: "Proceedings of the International Congress of Mathematicians" (editors Z Ciesielski, C Olech), PWN (1984) 647

[13] A Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978) 225 | DOI

[14] Y Fujimoto, Endomorphisms of smooth projective 3–folds with non-negative Kodaira dimension, Publ. Res. Inst. Math. Sci. 38 (2002) 33 | DOI

[15] Y Fujimoto, N Nakayama, Endomorphisms of smooth projective 3–folds with nonnegative Kodaira dimension, II, J. Math. Kyoto Univ. 47 (2007) 79 | DOI

[16] M Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981) 53 | DOI

[17] A Höring, T Peternell, Non-algebraic compact Kähler threefolds admitting endomorphisms, Sci. China Math. 54 (2011) 1635 | DOI

[18] O H Kegel, B A F Wehrfritz, Strong finiteness conditions in locally finite groups, Math. Z. 117 (1970) 309 | DOI

[19] O H Kegel, B A F Wehrfritz, Locally finite groups, 3, North-Holland (1973)

[20] B Kleiner, J Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587 | DOI

[21] M Kreck, W Lück, Topological rigidity for non-aspherical manifolds, Pure Appl. Math. Q. 5 (2009) 873 | DOI

[22] D I Lieberman, Compactness of the Chow scheme : applications to automorphisms and deformations of Kähler manifolds, from: "Fonctions de plusieurs variables complexes, III" (editor F Norguet), Lecture Notes in Math. 670, Springer (1978) 140 | DOI

[23] D Montgomery, Topological groups of differentiable transformations, Ann. of Math. 46 (1945) 382 | DOI

[24] J W Morgan, F T H Fong, Ricci flow and geometrization of 3–manifolds, 53, Amer. Math. Soc. (2010) | DOI

[25] J Morgan, G Tian, The geometrization conjecture, 5, Amer. Math. Soc. (2014)

[26] N Nakayama, D Q Zhang, Building blocks of étale endomorphisms of complex projective manifolds, Proc. Lond. Math. Soc. 99 (2009) 725 | DOI

[27] V Nekrashevych, G Pete, Scale-invariant groups, Groups Geom. Dyn. 5 (2011) 139 | DOI

[28] A J Ol’Šanskiĭ, An infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980) 309

[29] G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002)

[30] G Perelman, Ricci flow with surgery on three-manifolds, preprint (2003)

[31] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)

[32] M S Raghunathan, Discrete subgroups of Lie groups, 68, Springer (1972)

[33] D J S Robinson, A course in the theory of groups, 80, Springer (1996) | DOI

[34] M Shub, Expanding maps, from: "Global analysis" (editors S S Chern, S Smale), Proc. Sympos. Pure Math. XIV, Amer. Math. Soc. (1970) 273

[35] V P Šunkov, Locally finite groups with a minimality condition for abelian subgroups, Algebra i Logika 9 (1970) 579

[36] S Wang, Non-zero degree maps between 3–manifolds, from: "Proceedings of the International Congress of Mathematicians" (editor L Tatsien), Higher Ed. Press (2002) 457

[37] J H C Whitehead, Combinatorial homotopy, I, Bull. Amer. Math. Soc. 55 (1949) 213 | DOI

[38] M Wüstner, On closed abelian subgroups of real Lie groups, J. Lie Theory 7 (1997) 279

[39] F Yu, S Wang, Covering degrees are determined by graph manifolds involved, Comment. Math. Helv. 74 (1999) 238 | DOI

Cité par Sources :