Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed manifold that admits a self-cover of degree . We say is strongly regular if all iterates are regular covers. In this case, we establish an algebraic structure theorem for the fundamental group of : We prove that surjects onto a nontrivial free abelian group , and the self-cover is induced by a linear endomorphism of . Under further hypotheses we show that a finite cover of admits the structure of a principal torus bundle. We show that this applies when is Kähler and is a strongly regular, holomorphic self-cover, and prove that a finite cover of splits as a product with a torus factor.
van Limbeek, Wouter 1
@article{GT_2018_22_4_a12, author = {van Limbeek, Wouter}, title = {Towers of regular self-covers and linear endomorphisms of tori}, journal = {Geometry & topology}, pages = {2427--2464}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, doi = {10.2140/gt.2018.22.2427}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2427/} }
TY - JOUR AU - van Limbeek, Wouter TI - Towers of regular self-covers and linear endomorphisms of tori JO - Geometry & topology PY - 2018 SP - 2427 EP - 2464 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2427/ DO - 10.2140/gt.2018.22.2427 ID - GT_2018_22_4_a12 ER -
van Limbeek, Wouter. Towers of regular self-covers and linear endomorphisms of tori. Geometry & topology, Tome 22 (2018) no. 4, pp. 2427-2464. doi : 10.2140/gt.2018.22.2427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2427/
[1] Kohomologie freier p–Torus-Operationen, Fak. f. Math. (1990)
,[2] Endomorphisms of hypersurfaces and other manifolds, Internat. Math. Res. Notices (2001) 53 | DOI
,[3] On co-Hopfian nilpotent groups, Bull. London Math. Soc. 35 (2003) 805 | DOI
,[4] On abelian principal bundles, Arch. Math. Basel 88 (2007) 164 | DOI
,[5] Sur les variétés analytiques complexes, Ann. Sci. Ecole Norm. Sup. 73 (1956) 157 | DOI
,[6] A note on mappings and automorphisms of almost complex manifolds, Ann. of Math. 77 (1963) 329 | DOI
, , ,[7] On the homology of finite free (Z∕2)n–complexes, Invent. Math. 74 (1983) 139 | DOI
,[8] Examples of expanding endomorphisms on fake tori, J. Topol. 7 (2014) 805 | DOI
, ,[9] The topological-Euclidean space form problem, Invent. Math. 45 (1978) 181 | DOI
, ,[10] Examples of expanding endomorphisms on exotic tori, Invent. Math. 45 (1978) 175 | DOI
, ,[11] Anosov diffeomorphisms, from: "Global analysis" (editors S S Chern, S Smale), Proc. Sympos. Pure Math. XIV, Amer. Math. Soc. (1970) 61
,[12] The disk theorem for four-dimensional manifolds, from: "Proceedings of the International Congress of Mathematicians" (editors Z Ciesielski, C Olech), PWN (1984) 647
,[13] On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978) 225 | DOI
,[14] Endomorphisms of smooth projective 3–folds with non-negative Kodaira dimension, Publ. Res. Inst. Math. Sci. 38 (2002) 33 | DOI
,[15] Endomorphisms of smooth projective 3–folds with nonnegative Kodaira dimension, II, J. Math. Kyoto Univ. 47 (2007) 79 | DOI
, ,[16] Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981) 53 | DOI
,[17] Non-algebraic compact Kähler threefolds admitting endomorphisms, Sci. China Math. 54 (2011) 1635 | DOI
, ,[18] Strong finiteness conditions in locally finite groups, Math. Z. 117 (1970) 309 | DOI
, ,[19] Locally finite groups, 3, North-Holland (1973)
, ,[20] Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587 | DOI
, ,[21] Topological rigidity for non-aspherical manifolds, Pure Appl. Math. Q. 5 (2009) 873 | DOI
, ,[22] Compactness of the Chow scheme : applications to automorphisms and deformations of Kähler manifolds, from: "Fonctions de plusieurs variables complexes, III" (editor F Norguet), Lecture Notes in Math. 670, Springer (1978) 140 | DOI
,[23] Topological groups of differentiable transformations, Ann. of Math. 46 (1945) 382 | DOI
,[24] Ricci flow and geometrization of 3–manifolds, 53, Amer. Math. Soc. (2010) | DOI
, ,[25] The geometrization conjecture, 5, Amer. Math. Soc. (2014)
, ,[26] Building blocks of étale endomorphisms of complex projective manifolds, Proc. Lond. Math. Soc. 99 (2009) 725 | DOI
, ,[27] Scale-invariant groups, Groups Geom. Dyn. 5 (2011) 139 | DOI
, ,[28] An infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980) 309
,[29] The entropy formula for the Ricci flow and its geometric applications, preprint (2002)
,[30] Ricci flow with surgery on three-manifolds, preprint (2003)
,[31] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, preprint (2003)
,[32] Discrete subgroups of Lie groups, 68, Springer (1972)
,[33] A course in the theory of groups, 80, Springer (1996) | DOI
,[34] Expanding maps, from: "Global analysis" (editors S S Chern, S Smale), Proc. Sympos. Pure Math. XIV, Amer. Math. Soc. (1970) 273
,[35] Locally finite groups with a minimality condition for abelian subgroups, Algebra i Logika 9 (1970) 579
,[36] Non-zero degree maps between 3–manifolds, from: "Proceedings of the International Congress of Mathematicians" (editor L Tatsien), Higher Ed. Press (2002) 457
,[37] Combinatorial homotopy, I, Bull. Amer. Math. Soc. 55 (1949) 213 | DOI
,[38] On closed abelian subgroups of real Lie groups, J. Lie Theory 7 (1997) 279
,[39] Covering degrees are determined by graph manifolds involved, Comment. Math. Helv. 74 (1999) 238 | DOI
, ,Cité par Sources :