Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Thanks to a recent result by Jean-Marc Schlenker, we establish an explicit linear inequality between the normalized entropies of pseudo-Anosov automorphisms and the hyperbolic volumes of their mapping tori. As corollaries, we give an improved lower bound for values of entropies of pseudo-Anosovs on a surface with fixed topology, and a proof of a slightly weaker version of the result by Farb, Leininger and Margalit first, and by Agol later, on finiteness of cusped manifolds generating surface automorphisms with small normalized entropies. Also, we present an analogous linear inequality between the Weil–Petersson translation distance of a pseudo-Anosov map (normalized by multiplying by the square root of the area of a surface) and the volume of its mapping torus, which leads to a better bound.
Kojima, Sadayoshi 1 ; McShane, Greg 2
@article{GT_2018_22_4_a11, author = {Kojima, Sadayoshi and McShane, Greg}, title = {Normalized entropy versus volume for {pseudo-Anosovs}}, journal = {Geometry & topology}, pages = {2403--2426}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, doi = {10.2140/gt.2018.22.2403}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2403/} }
TY - JOUR AU - Kojima, Sadayoshi AU - McShane, Greg TI - Normalized entropy versus volume for pseudo-Anosovs JO - Geometry & topology PY - 2018 SP - 2403 EP - 2426 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2403/ DO - 10.2140/gt.2018.22.2403 ID - GT_2018_22_4_a11 ER -
Kojima, Sadayoshi; McShane, Greg. Normalized entropy versus volume for pseudo-Anosovs. Geometry & topology, Tome 22 (2018) no. 4, pp. 2403-2426. doi : 10.2140/gt.2018.22.2403. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2403/
[1] Ideal triangulations of pseudo-Anosov mapping tori, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 1 | DOI
,[2] Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94 | DOI
,[3] An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978) 73 | DOI
,[4] Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132 (1998) 381 | DOI
,[5] Weil–Petersson translation distance and volumes of mapping tori, Comm. Anal. Geom. 11 (2003) 987 | DOI
,[6] Geometric inflexibility and 3–manifolds that fiber over the circle, J. Topol. 4 (2011) 1 | DOI
, ,[7] The orientable cusped hyperbolic 3–manifolds of minimum volume, Invent. Math. 146 (2001) 451 | DOI
, ,[8] Envelopes of horospheres and Weingarten surfaces in hyperbolic 3–spaces, preprint (1984)
,[9] Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. 159 (2004) 305 | DOI
, , ,[10] Small dilatation pseudo-Anosov homeomorphisms and 3–manifolds, Adv. Math. 228 (2011) 1466 | DOI
, , ,[11] Quasiconformal Teichmüller theory, 76, Amer. Math. Soc. (2000)
, ,[12] Teichmüller theory and applications to geometry, topology, and dynamics, I, Matrix Editions (2006)
,[13] Entropy versus volume for pseudo-Anosovs, Experiment. Math. 18 (2009) 397
, , ,[14] Entropy, Weil–Petersson translation distance and Gromov norm for surface automorphisms, Proc. Amer. Math. Soc. 140 (2012) 3993 | DOI
,[15] On the renormalized volume of hyperbolic 3–manifolds, Comm. Math. Phys. 279 (2008) 637 | DOI
, ,[16] Renormalization and 3–manifolds which fiber over the circle, 142, Princeton Univ. Press (1996) | DOI
,[17] Bounded geometry for Kleinian groups, Invent. Math. 146 (2001) 143 | DOI
,[18] The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949) 545 | DOI
,[19] Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443 | DOI
,[20] A characterization of short curves of a Teichmüller geodesic, Geom. Topol. 9 (2005) 179 | DOI
,[21] The renormalized volume and the volume of the convex core of quasifuchsian manifolds, Math. Res. Lett. 20 (2013) 773 | DOI
,[22] The renormalized volume and the volume of the convex core of quasifuchsian manifolds, v4, revision (2017)
,[23] The geometry and topology of three-manifolds, lecture notes (1979)
,[24] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI
,[25] Hyperbolic structures on 3–manifolds, II : Surface groups and 3–manifolds which fiber over the circle, preprint (1998)
,Cité par Sources :