Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a mathematical theory of Witten’s Gauged Linear Sigma Model (GLSM). Our theory applies to a wide range of examples, including many cases with nonabelian gauge group.
Both the Gromov–Witten theory of a Calabi–Yau complete intersection and the Landau–Ginzburg dual (FJRW theory) of can be expressed as gauged linear sigma models. Furthermore, the Landau–Ginzburg/Calabi–Yau correspondence can be interpreted as a variation of the moment map or a deformation of GIT in the GLSM. This paper focuses primarily on the algebraic theory, while a companion article will treat the analytic theory.
Fan, Huijun 1 ; Jarvis, Tyler 2 ; Ruan, Yongbin 3
@article{GT_2018_22_1_a4, author = {Fan, Huijun and Jarvis, Tyler and Ruan, Yongbin}, title = {A mathematical theory of the gauged linear sigma model}, journal = {Geometry & topology}, pages = {235--303}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2018}, doi = {10.2140/gt.2018.22.235}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.235/} }
TY - JOUR AU - Fan, Huijun AU - Jarvis, Tyler AU - Ruan, Yongbin TI - A mathematical theory of the gauged linear sigma model JO - Geometry & topology PY - 2018 SP - 235 EP - 303 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.235/ DO - 10.2140/gt.2018.22.235 ID - GT_2018_22_1_a4 ER -
Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin. A mathematical theory of the gauged linear sigma model. Geometry & topology, Tome 22 (2018) no. 1, pp. 235-303. doi : 10.2140/gt.2018.22.235. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.235/
[1] Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27 | DOI
, ,[2] The Pfaffian–Grassmannian equivalence revisited, Algebr. Geom. 2 (2015) 332 | DOI
, , ,[3] Good moduli spaces for Artin stacks, Ann. Inst. Fourier Grenoble 63 (2013) 2349 | DOI
,[4] Decompactifications and massless D-branes in hybrid models, J. High Energy Phys. (2010) | DOI
, ,[5] Linear algebraic groups, 126, Springer (1991) | DOI
,[6] Gromov–Witten invariants of stable maps with fields, Int. Math. Res. Not. 2012 (2012) 4163 | DOI
, ,[7] Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI
, , ,[8] Mixed-spin-p fields of Fermat quintic polynomials, preprint (2015)
, , , ,[9] Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI
, ,[10] Orbifold quasimap theory, Math. Ann. 363 (2015) 777 | DOI
, , ,[11] The Witten top Chern class via K–theory, J. Algebraic Geom. 15 (2006) 681 | DOI
,[12] Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 127 | DOI
, , ,[13] Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010) 117 | DOI
, ,[14] LG/CY correspondence : the state space isomorphism, Adv. Math. 227 (2011) 2157 | DOI
, ,[15] Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010) 3022 | DOI
, ,[16] Stable quasimaps to GIT quotients, J. Geom. Phys. 75 (2014) 17 | DOI
, , ,[17] The Landau–Ginzburg/Calabi–Yau correspondence for certain complete intersections, PhD thesis, University of Michigan (2014)
,[18] Landau–Ginzburg/Calabi–Yau correspondence for the complete intersections X3,3 and X2,2,2,2, Adv. Math. 307 (2017) 1 | DOI
,[19] Higher-genus wall-crossing in the gauged linear sigma model, preprint (2017)
, , ,[20] Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998) 5 | DOI
, ,[21] Logarithmic trace and orbifold products, Duke Math. J. 153 (2010) 427 | DOI
, , ,[22] Tautological relations and the r–spin Witten conjecture, Ann. Sci. Éc. Norm. Supér. 43 (2010) 621 | DOI
, , ,[23] The Witten equation and its virtual fundamental cycle, preprint (2007)
, , ,[24] Geometry and analysis of spin equations, Comm. Pure Appl. Math. 61 (2008) 745 | DOI
, , ,[25] The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI
, , ,[26] Analytic theory of the gauged linear sigma model, preprint (2017)
, , ,[27] A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141
,[28] Moduli of curves, 187, Springer (1998) | DOI
, ,[29] A generalisation of Nagata’s theorem on ruled surfaces, Compositio Math. 127 (2001) 321 | DOI
, ,[30] Aspects of non-abelian gauge dynamics in two-dimensional N = (2,2) theories, J. High Energy Phys. (2007) | DOI
, ,[31] Higher genus Gromov–Witten invariants of the Grassmannian, and the Pfaffian Calabi–Yau 3–folds, Adv. Theor. Math. Phys. 13 (2009) 463 | DOI
, ,[32] Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI
, ,[33] Stable quasimaps, Commun. Korean Math. Soc. 27 (2012) 571 | DOI
,[34] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1 | DOI
,[35] Lefschetz decompositions and categorical resolutions of singularities, Selecta Math. 13 (2008) 661 | DOI
,[36] Witten’s conjecture and the Virasoro conjecture for genus up to two, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 31 | DOI
,[37] A proof of the Landau–Ginzburg/Calabi–Yau correspondence via the crepant transformation conjecture, Ann. Sci. Éc. Norm. Supér. 49 (2016) 1403 | DOI
, , ,[38] The moduli space of stable quotients, Geom. Topol. 15 (2011) 1651 | DOI
, , ,[39] Geometric invariant theory, 34, Springer (1994) | DOI
, , ,[40] (Log) twisted curves, Compos. Math. 143 (2007) 476 | DOI
,[41] Algebraic construction of Witten’s top Chern class, from: "Advances in algebraic geometry motivated by physics" (editor E Previato), Contemp. Math. 276, Amer. Math. Soc. (2001) 229 | DOI
, ,[42] Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016) 1 | DOI
, ,[43] Two-point Gromov–Witten formulas for symplectic toric manifolds, PhD thesis, State University of New York at Stony Brook (2012)
,[44] A Landau–Ginzburg/Calabi–Yau correspondence for the mirror quintic, Ann. Inst. Fourier Grenoble 66 (2016) 1045 | DOI
, ,[45] Moduli for principal bundles over algebraic curves, I, Proc. Indian Acad. Sci. Math. Sci. 106 (1996) 301 | DOI
,[46] The Pfaffian Calabi–Yau, its mirror, and their link to the Grassmannian G(2,7), Compositio Math. 122 (2000) 135 | DOI
,[47] Wall-crossing in genus zero Landau–Ginzburg theory, preprint (2014)
, ,[48] Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996) 691 | DOI
,[49] Analysis of gauged Witten equation, preprint (2014)
, ,[50] Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry", Lehigh Univ. (1991) 243
,[51] The N matrix model and gauged WZW models, Nuclear Phys. B 371 (1992) 191 | DOI
,[52] Algebraic geometry associated with matrix models of two-dimensional gravity, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 235
,[53] Phases of N = 2 theories in two dimensions, from: "Mirror symmetry, II" (editors B Greene, S T Yau), AMS/IP Stud. Adv. Math. 1, Amer. Math. Soc. (1997) 143
,Cité par Sources :