A mathematical theory of the gauged linear sigma model
Geometry & topology, Tome 22 (2018) no. 1, pp. 235-303.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a mathematical theory of Witten’s Gauged Linear Sigma Model (GLSM). Our theory applies to a wide range of examples, including many cases with nonabelian gauge group.

Both the Gromov–Witten theory of a Calabi–Yau complete intersection X and the Landau–Ginzburg dual (FJRW theory) of X can be expressed as gauged linear sigma models. Furthermore, the Landau–Ginzburg/Calabi–Yau correspondence can be interpreted as a variation of the moment map or a deformation of GIT in the GLSM. This paper focuses primarily on the algebraic theory, while a companion article will treat the analytic theory.

DOI : 10.2140/gt.2018.22.235
Classification : 14D23, 14L24, 14N35, 53D45, 81T60, 14J32, 14L30, 32G81, 81T40
Keywords: gauged linear sigma model, mirror symmetry, Gromov–Witten, Calabi–Yau, Landau–Ginzburg

Fan, Huijun 1 ; Jarvis, Tyler 2 ; Ruan, Yongbin 3

1 School of Mathematical Science, Beijing (Peking) University, Beijing, China
2 Department of Mathematics, Brigham Young University, Provo, UT, United States
3 Mathematics Department, University of Michigan, Ann Arbor, MI, United States, Beijing International Center for Mathematical Science, Peking University, Beijing, China
@article{GT_2018_22_1_a4,
     author = {Fan, Huijun and Jarvis, Tyler and Ruan, Yongbin},
     title = {A mathematical theory of the gauged linear sigma model},
     journal = {Geometry & topology},
     pages = {235--303},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2018},
     doi = {10.2140/gt.2018.22.235},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.235/}
}
TY  - JOUR
AU  - Fan, Huijun
AU  - Jarvis, Tyler
AU  - Ruan, Yongbin
TI  - A mathematical theory of the gauged linear sigma model
JO  - Geometry & topology
PY  - 2018
SP  - 235
EP  - 303
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.235/
DO  - 10.2140/gt.2018.22.235
ID  - GT_2018_22_1_a4
ER  - 
%0 Journal Article
%A Fan, Huijun
%A Jarvis, Tyler
%A Ruan, Yongbin
%T A mathematical theory of the gauged linear sigma model
%J Geometry & topology
%D 2018
%P 235-303
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.235/
%R 10.2140/gt.2018.22.235
%F GT_2018_22_1_a4
Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin. A mathematical theory of the gauged linear sigma model. Geometry & topology, Tome 22 (2018) no. 1, pp. 235-303. doi : 10.2140/gt.2018.22.235. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.235/

[1] D Abramovich, A Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27 | DOI

[2] N Addington, W Donovan, E Segal, The Pfaffian–Grassmannian equivalence revisited, Algebr. Geom. 2 (2015) 332 | DOI

[3] J Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier Grenoble 63 (2013) 2349 | DOI

[4] P S Aspinwall, M R Plesser, Decompactifications and massless D-branes in hybrid models, J. High Energy Phys. (2010) | DOI

[5] A Borel, Linear algebraic groups, 126, Springer (1991) | DOI

[6] H L Chang, J Li, Gromov–Witten invariants of stable maps with fields, Int. Math. Res. Not. 2012 (2012) 4163 | DOI

[7] H L Chang, J Li, W P Li, Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI

[8] H L Chang, J Li, W P Li, C C M Liu, Mixed-spin-p fields of Fermat quintic polynomials, preprint (2015)

[9] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25 | DOI

[10] D Cheong, I Ciocan-Fontanine, B Kim, Orbifold quasimap theory, Math. Ann. 363 (2015) 777 | DOI

[11] A Chiodo, The Witten top Chern class via K–theory, J. Algebraic Geom. 15 (2006) 681 | DOI

[12] A Chiodo, H Iritani, Y Ruan, Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 127 | DOI

[13] A Chiodo, Y Ruan, Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010) 117 | DOI

[14] A Chiodo, Y Ruan, LG/CY correspondence : the state space isomorphism, Adv. Math. 227 (2011) 2157 | DOI

[15] I Ciocan-Fontanine, B Kim, Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010) 3022 | DOI

[16] I Ciocan-Fontanine, B Kim, D Maulik, Stable quasimaps to GIT quotients, J. Geom. Phys. 75 (2014) 17 | DOI

[17] E Clader, The Landau–Ginzburg/Calabi–Yau correspondence for certain complete intersections, PhD thesis, University of Michigan (2014)

[18] E Clader, Landau–Ginzburg/Calabi–Yau correspondence for the complete intersections X3,3 and X2,2,2,2, Adv. Math. 307 (2017) 1 | DOI

[19] E Clader, F Janda, Y Ruan, Higher-genus wall-crossing in the gauged linear sigma model, preprint (2017)

[20] I V Dolgachev, Y Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998) 5 | DOI

[21] D Edidin, T J Jarvis, T Kimura, Logarithmic trace and orbifold products, Duke Math. J. 153 (2010) 427 | DOI

[22] C Faber, S Shadrin, D Zvonkine, Tautological relations and the r–spin Witten conjecture, Ann. Sci. Éc. Norm. Supér. 43 (2010) 621 | DOI

[23] H Fan, T J Jarvis, Y Ruan, The Witten equation and its virtual fundamental cycle, preprint (2007)

[24] H Fan, T J Jarvis, Y Ruan, Geometry and analysis of spin equations, Comm. Pure Appl. Math. 61 (2008) 745 | DOI

[25] H Fan, T Jarvis, Y Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI

[26] H Fan, T J Jarvis, Y Ruan, Analytic theory of the gauged linear sigma model, preprint (2017)

[27] A Givental, A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141

[28] J Harris, I Morrison, Moduli of curves, 187, Springer (1998) | DOI

[29] Y I Holla, M S Narasimhan, A generalisation of Nagata’s theorem on ruled surfaces, Compositio Math. 127 (2001) 321 | DOI

[30] K Hori, D Tong, Aspects of non-abelian gauge dynamics in two-dimensional N = (2,2) theories, J. High Energy Phys. (2007) | DOI

[31] S Hosono, Y Konishi, Higher genus Gromov–Witten invariants of the Grassmannian, and the Pfaffian Calabi–Yau 3–folds, Adv. Theor. Math. Phys. 13 (2009) 463 | DOI

[32] Y H Kiem, J Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013) 1025 | DOI

[33] B Kim, Stable quasimaps, Commun. Korean Math. Soc. 27 (2012) 571 | DOI

[34] M Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1 | DOI

[35] A Kuznetsov, Lefschetz decompositions and categorical resolutions of singularities, Selecta Math. 13 (2008) 661 | DOI

[36] Y P Lee, Witten’s conjecture and the Virasoro conjecture for genus up to two, from: "Gromov–Witten theory of spin curves and orbifolds" (editors T J Jarvis, T Kimura, A Vaintrob), Contemp. Math. 403, Amer. Math. Soc. (2006) 31 | DOI

[37] Y P Lee, N Priddis, M Shoemaker, A proof of the Landau–Ginzburg/Calabi–Yau correspondence via the crepant transformation conjecture, Ann. Sci. Éc. Norm. Supér. 49 (2016) 1403 | DOI

[38] A Marian, D Oprea, R Pandharipande, The moduli space of stable quotients, Geom. Topol. 15 (2011) 1651 | DOI

[39] D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, 34, Springer (1994) | DOI

[40] M C Olsson, (Log) twisted curves, Compos. Math. 143 (2007) 476 | DOI

[41] A Polishchuk, A Vaintrob, Algebraic construction of Witten’s top Chern class, from: "Advances in algebraic geometry motivated by physics" (editor E Previato), Contemp. Math. 276, Amer. Math. Soc. (2001) 229 | DOI

[42] A Polishchuk, A Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016) 1 | DOI

[43] A M Popa, Two-point Gromov–Witten formulas for symplectic toric manifolds, PhD thesis, State University of New York at Stony Brook (2012)

[44] N Priddis, M Shoemaker, A Landau–Ginzburg/Calabi–Yau correspondence for the mirror quintic, Ann. Inst. Fourier Grenoble 66 (2016) 1045 | DOI

[45] A Ramanathan, Moduli for principal bundles over algebraic curves, I, Proc. Indian Acad. Sci. Math. Sci. 106 (1996) 301 | DOI

[46] E A Rødland, The Pfaffian Calabi–Yau, its mirror, and their link to the Grassmannian G(2,7), Compositio Math. 122 (2000) 135 | DOI

[47] D Ross, Y Ruan, Wall-crossing in genus zero Landau–Ginzburg theory, preprint (2014)

[48] M Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996) 691 | DOI

[49] G Tian, G Xu, Analysis of gauged Witten equation, preprint (2014)

[50] E Witten, Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry", Lehigh Univ. (1991) 243

[51] E Witten, The N matrix model and gauged WZW models, Nuclear Phys. B 371 (1992) 191 | DOI

[52] E Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 235

[53] E Witten, Phases of N = 2 theories in two dimensions, from: "Mirror symmetry, II" (editors B Greene, S T Yau), AMS/IP Stud. Adv. Math. 1, Amer. Math. Soc. (1997) 143

Cité par Sources :