Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that there are infinitely many commensurability classes of pseudomodular groups, thus answering a question raised by Long and Reid. These are Fuchsian groups whose cusp set is all of the rationals but which are not commensurable to the modular group. We do this by introducing a general construction for the fundamental domains of Fuchsian groups obtained by gluing together marked ideal triangular tiles, which we call hyperbolic jigsaw groups.
Lou, Beicheng 1 ; Tan, Ser 1 ; Vo, Anh Duc 1
@article{GT_2018_22_4_a9, author = {Lou, Beicheng and Tan, Ser and Vo, Anh Duc}, title = {Hyperbolic jigsaws and families of pseudomodular groups, {I}}, journal = {Geometry & topology}, pages = {2339--2366}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, doi = {10.2140/gt.2018.22.2339}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2339/} }
TY - JOUR AU - Lou, Beicheng AU - Tan, Ser AU - Vo, Anh Duc TI - Hyperbolic jigsaws and families of pseudomodular groups, I JO - Geometry & topology PY - 2018 SP - 2339 EP - 2366 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2339/ DO - 10.2140/gt.2018.22.2339 ID - GT_2018_22_4_a9 ER -
%0 Journal Article %A Lou, Beicheng %A Tan, Ser %A Vo, Anh Duc %T Hyperbolic jigsaws and families of pseudomodular groups, I %J Geometry & topology %D 2018 %P 2339-2366 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2339/ %R 10.2140/gt.2018.22.2339 %F GT_2018_22_4_a9
Lou, Beicheng; Tan, Ser; Vo, Anh Duc. Hyperbolic jigsaws and families of pseudomodular groups, I. Geometry & topology, Tome 22 (2018) no. 4, pp. 2339-2366. doi : 10.2140/gt.2018.22.2339. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2339/
[1] A computer experiment on pseudomodular groups, Master’s thesis, Nara Women’s University (2015)
,[2] Congruence obstructions to pseudomodularity of Fricke groups, C. R. Math. Acad. Sci. Paris 346 (2008) 603 | DOI
,[3] A characterization of arithmetic subgroups of SL(2, R) and SL(2, C), Math. Nachr. 159 (1992) 245 | DOI
, , ,[4] Pseudomodular surfaces, J. Reine Angew. Math. 552 (2002) 77 | DOI
, ,[5] Hyperbolic jigsaws and families of pseudomodular groups, II: Integral jigsaws, generalized continued fractions and arithmeticity, in preparation
, , ,[6] Discrete subgroups of semisimple Lie groups, 17, Springer (1991) | DOI
,[7] Flat faces in punctured torus groups, Rocky Mountain J. Math. 37 (2007) 2025 | DOI
,[8] A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975) 600 | DOI
,[9] The study of pseudomodular groups and the computations, Undergraduate honours thesis, National University of Singapore (2016)
,Cité par Sources :