Hyperbolic jigsaws and families of pseudomodular groups, I
Geometry & topology, Tome 22 (2018) no. 4, pp. 2339-2366.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that there are infinitely many commensurability classes of pseudomodular groups, thus answering a question raised by Long and Reid. These are Fuchsian groups whose cusp set is all of the rationals but which are not commensurable to the modular group. We do this by introducing a general construction for the fundamental domains of Fuchsian groups obtained by gluing together marked ideal triangular tiles, which we call hyperbolic jigsaw groups.

DOI : 10.2140/gt.2018.22.2339
Classification : 11F06, 20H05, 20H15, 30F35, 30F60, 57M05, 57M50
Keywords: pseudomodular, killer intervals, hyperbolic jigsaw, marked ideal triangle

Lou, Beicheng 1 ; Tan, Ser 1 ; Vo, Anh Duc 1

1 Department of Mathematics, National University of Singapore, Singapore
@article{GT_2018_22_4_a9,
     author = {Lou, Beicheng and Tan, Ser and Vo, Anh Duc},
     title = {Hyperbolic jigsaws and families of pseudomodular groups, {I}},
     journal = {Geometry & topology},
     pages = {2339--2366},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     doi = {10.2140/gt.2018.22.2339},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2339/}
}
TY  - JOUR
AU  - Lou, Beicheng
AU  - Tan, Ser
AU  - Vo, Anh Duc
TI  - Hyperbolic jigsaws and families of pseudomodular groups, I
JO  - Geometry & topology
PY  - 2018
SP  - 2339
EP  - 2366
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2339/
DO  - 10.2140/gt.2018.22.2339
ID  - GT_2018_22_4_a9
ER  - 
%0 Journal Article
%A Lou, Beicheng
%A Tan, Ser
%A Vo, Anh Duc
%T Hyperbolic jigsaws and families of pseudomodular groups, I
%J Geometry & topology
%D 2018
%P 2339-2366
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2339/
%R 10.2140/gt.2018.22.2339
%F GT_2018_22_4_a9
Lou, Beicheng; Tan, Ser; Vo, Anh Duc. Hyperbolic jigsaws and families of pseudomodular groups, I. Geometry & topology, Tome 22 (2018) no. 4, pp. 2339-2366. doi : 10.2140/gt.2018.22.2339. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2339/

[1] O Ayaka, A computer experiment on pseudomodular groups, Master’s thesis, Nara Women’s University (2015)

[2] D Fithian, Congruence obstructions to pseudomodularity of Fricke groups, C. R. Math. Acad. Sci. Paris 346 (2008) 603 | DOI

[3] H M Hilden, M T Lozano, J M Montesinos-Amilibia, A characterization of arithmetic subgroups of SL(2, R) and SL(2, C), Math. Nachr. 159 (1992) 245 | DOI

[4] D D Long, A W Reid, Pseudomodular surfaces, J. Reine Angew. Math. 552 (2002) 77 | DOI

[5] B Lou, S P Tan, A D Vo, Hyperbolic jigsaws and families of pseudomodular groups, II: Integral jigsaws, generalized continued fractions and arithmeticity, in preparation

[6] G A Margulis, Discrete subgroups of semisimple Lie groups, 17, Springer (1991) | DOI

[7] H Proskin, Flat faces in punctured torus groups, Rocky Mountain J. Math. 37 (2007) 2025 | DOI

[8] K Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975) 600 | DOI

[9] J W Tan, The study of pseudomodular groups and the computations, Undergraduate honours thesis, National University of Singapore (2016)

Cité par Sources :