Surgery for partially hyperbolic dynamical systems, I: Blow-ups of invariant submanifolds
Geometry & topology, Tome 22 (2018) no. 4, pp. 2219-2252.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We suggest a method to construct new examples of partially hyperbolic diffeomorphisms. We begin with a partially hyperbolic diffeomorphism f : M M which leaves invariant a submanifold N M. We assume that N is an Anosov submanifold for f, that is, the restriction f|N is an Anosov diffeomorphism and the center distribution is transverse to TN TM. By replacing each point in N with the projective space (real or complex) of lines normal to N, we obtain the blow-up M̂. Replacing M with M̂ amounts to a surgery on the neighborhood of N which alters the topology of the manifold. The diffeomorphism f induces a canonical diffeomorphism f̂: M̂ M̂. We prove that under certain assumptions on the local dynamics of f at N the diffeomorphism f̂ is also partially hyperbolic. We also present some modifications, such as the connected sum construction, which allows to “paste together” two partially hyperbolic diffeomorphisms to obtain a new one. Finally, we present several examples to which our results apply.

DOI : 10.2140/gt.2018.22.2219
Classification : 37D30
Keywords: partially hyperbolic diffeomorphism, surgery, blow-up, Anosov submanifold, fiberwise Anosov diffeomorphism

Gogolev, Andrey 1

1 Department of Mathematics, Ohio State University, Columbus, OH, United States, Department of Mathematical Sciences, Binghamton University, State University of New York, Binghamton, NY, United States
@article{GT_2018_22_4_a6,
     author = {Gogolev, Andrey},
     title = {Surgery for partially hyperbolic dynamical systems, {I:} {Blow-ups} of invariant submanifolds},
     journal = {Geometry & topology},
     pages = {2219--2252},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     doi = {10.2140/gt.2018.22.2219},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2219/}
}
TY  - JOUR
AU  - Gogolev, Andrey
TI  - Surgery for partially hyperbolic dynamical systems, I: Blow-ups of invariant submanifolds
JO  - Geometry & topology
PY  - 2018
SP  - 2219
EP  - 2252
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2219/
DO  - 10.2140/gt.2018.22.2219
ID  - GT_2018_22_4_a6
ER  - 
%0 Journal Article
%A Gogolev, Andrey
%T Surgery for partially hyperbolic dynamical systems, I: Blow-ups of invariant submanifolds
%J Geometry & topology
%D 2018
%P 2219-2252
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2219/
%R 10.2140/gt.2018.22.2219
%F GT_2018_22_4_a6
Gogolev, Andrey. Surgery for partially hyperbolic dynamical systems, I: Blow-ups of invariant submanifolds. Geometry & topology, Tome 22 (2018) no. 4, pp. 2219-2252. doi : 10.2140/gt.2018.22.2219. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2219/

[1] M I Brin, J B Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 170

[2] K Burns, A Wilkinson, Dynamical coherence and center bunching, Discrete Contin. Dyn. Syst. 22 (2008) 89 | DOI

[3] P Carrasco, F Rodriguez Hertz, J Rodriguez Hertz, R Ures, Partially hyperbolic dynamics in dimension 3, preprint (2015)

[4] A Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. 11 (1932) 333

[5] J Franks, B Williams, Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158 | DOI

[6] A Gogolev, P Ontaneda, F Rodriguez Hertz, New partially hyperbolic dynamical systems, I, Acta Math. 215 (2015) 363 | DOI

[7] A Hammerlindl, R Potrie, Partial hyperbolicity and classification: a survey, preprint (2015)

[8] M Handel, W P Thurston, Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95 | DOI

[9] B Hasselblatt, Y Pesin, Partially hyperbolic dynamical systems, from: "Handbook of dynamical systems" (editors B Hasselblatt, A Katok), Elsevier (2006) 1 | DOI

[10] M W Hirsch, C C Pugh, M Shub, Invariant manifolds, 583, Springer (1977) | DOI

[11] D Huybrechts, Complex geometry: an introduction, Springer (2005) | DOI

[12] M A I., On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949) 9

[13] A Katok, Bernoulli diffeomorphisms on surfaces, Ann. of Math. 110 (1979) 529 | DOI

[14] A Katok, J Lewis, Global rigidity results for lattice actions on tori and new examples of volume-preserving actions, Israel J. Math. 93 (1996) 253 | DOI

[15] P Petersen, Riemannian geometry, 171, Springer (2006) | DOI

[16] F Rodriguez Hertz, M A Rodriguez Hertz, R Ures, A survey of partially hyperbolic dynamics, from: "Partially hyperbolic dynamics, laminations, and Teichmüller flow" (editors G Forni, M Lyubich, C Pugh, M Shub), Fields Inst. Commun. 51, Amer. Math. Soc. (2007) 35

[17] F Rodriguez Hertz, M A Rodriguez Hertz, R Ures, Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn. 2 (2008) 187 | DOI

[18] R Sacksteder, Strongly mixing transformations, from: "Global analysis" (editors S S Chern, S Smale), Proceedings of Symposia in Pure Mathematics XIV, Amer. Math. Soc. (1970) 245

[19] S Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747 | DOI

[20] C W Stark, Blowup and fixed points, from: "Geometry and topology in dynamics" (editors M Barge, K Kuperberg), Contemp. Math. 246, Amer. Math. Soc. (1999) 239 | DOI

[21] P Tomter, Anosov flows on infrahomogeneous spaces, PhD thesis, University of California, Berkeley (1969)

Cité par Sources :