Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We suggest a method to construct new examples of partially hyperbolic diffeomorphisms. We begin with a partially hyperbolic diffeomorphism which leaves invariant a submanifold . We assume that is an Anosov submanifold for , that is, the restriction is an Anosov diffeomorphism and the center distribution is transverse to . By replacing each point in with the projective space (real or complex) of lines normal to , we obtain the blow-up . Replacing with amounts to a surgery on the neighborhood of which alters the topology of the manifold. The diffeomorphism induces a canonical diffeomorphism . We prove that under certain assumptions on the local dynamics of at the diffeomorphism is also partially hyperbolic. We also present some modifications, such as the connected sum construction, which allows to “paste together” two partially hyperbolic diffeomorphisms to obtain a new one. Finally, we present several examples to which our results apply.
Gogolev, Andrey 1
@article{GT_2018_22_4_a6, author = {Gogolev, Andrey}, title = {Surgery for partially hyperbolic dynamical systems, {I:} {Blow-ups} of invariant submanifolds}, journal = {Geometry & topology}, pages = {2219--2252}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2018}, doi = {10.2140/gt.2018.22.2219}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2219/} }
TY - JOUR AU - Gogolev, Andrey TI - Surgery for partially hyperbolic dynamical systems, I: Blow-ups of invariant submanifolds JO - Geometry & topology PY - 2018 SP - 2219 EP - 2252 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2219/ DO - 10.2140/gt.2018.22.2219 ID - GT_2018_22_4_a6 ER -
%0 Journal Article %A Gogolev, Andrey %T Surgery for partially hyperbolic dynamical systems, I: Blow-ups of invariant submanifolds %J Geometry & topology %D 2018 %P 2219-2252 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2219/ %R 10.2140/gt.2018.22.2219 %F GT_2018_22_4_a6
Gogolev, Andrey. Surgery for partially hyperbolic dynamical systems, I: Blow-ups of invariant submanifolds. Geometry & topology, Tome 22 (2018) no. 4, pp. 2219-2252. doi : 10.2140/gt.2018.22.2219. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2219/
[1] Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974) 170
, ,[2] Dynamical coherence and center bunching, Discrete Contin. Dyn. Syst. 22 (2008) 89 | DOI
, ,[3] Partially hyperbolic dynamics in dimension 3, preprint (2015)
, , , ,[4] Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. 11 (1932) 333
,[5] Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158 | DOI
, ,[6] New partially hyperbolic dynamical systems, I, Acta Math. 215 (2015) 363 | DOI
, , ,[7] Partial hyperbolicity and classification: a survey, preprint (2015)
, ,[8] Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95 | DOI
, ,[9] Partially hyperbolic dynamical systems, from: "Handbook of dynamical systems" (editors B Hasselblatt, A Katok), Elsevier (2006) 1 | DOI
, ,[10] Invariant manifolds, 583, Springer (1977) | DOI
, , ,[11] Complex geometry: an introduction, Springer (2005) | DOI
,[12] On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949) 9
,[13] Bernoulli diffeomorphisms on surfaces, Ann. of Math. 110 (1979) 529 | DOI
,[14] Global rigidity results for lattice actions on tori and new examples of volume-preserving actions, Israel J. Math. 93 (1996) 253 | DOI
, ,[15] Riemannian geometry, 171, Springer (2006) | DOI
,[16] A survey of partially hyperbolic dynamics, from: "Partially hyperbolic dynamics, laminations, and Teichmüller flow" (editors G Forni, M Lyubich, C Pugh, M Shub), Fields Inst. Commun. 51, Amer. Math. Soc. (2007) 35
, , ,[17] Partial hyperbolicity and ergodicity in dimension three, J. Mod. Dyn. 2 (2008) 187 | DOI
, , ,[18] Strongly mixing transformations, from: "Global analysis" (editors S S Chern, S Smale), Proceedings of Symposia in Pure Mathematics XIV, Amer. Math. Soc. (1970) 245
,[19] Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747 | DOI
,[20] Blowup and fixed points, from: "Geometry and topology in dynamics" (editors M Barge, K Kuperberg), Contemp. Math. 246, Amer. Math. Soc. (1999) 239 | DOI
,[21] Anosov flows on infrahomogeneous spaces, PhD thesis, University of California, Berkeley (1969)
,Cité par Sources :