Primes and fields in stable motivic homotopy theory
Geometry & topology, Tome 22 (2018) no. 4, pp. 2187-2218.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let F be a field of characteristic different from 2. We establish surjectivity of Balmer’s comparison map

from the tensor triangular spectrum of the homotopy category of compact motivic spectra to the homogeneous Zariski spectrum of Milnor–Witt K–theory. We also comment on the tensor triangular geometry of compact cellular motivic spectra, producing in particular novel field spectra in this category. We conclude with a list of questions about the structure of the tensor triangular spectrum of the stable motivic homotopy category.

DOI : 10.2140/gt.2018.22.2187
Classification : 14F42, 19D45, 55P42, 18E30
Keywords: tensor triangular geometry, stable motivic homotopy theory

Heller, Jeremiah 1 ; Ormsby, Kyle 2

1 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
2 Department of Mathematics, Reed College, Portland, OR, United States
@article{GT_2018_22_4_a5,
     author = {Heller, Jeremiah and Ormsby, Kyle},
     title = {Primes and fields in stable motivic homotopy theory},
     journal = {Geometry & topology},
     pages = {2187--2218},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     doi = {10.2140/gt.2018.22.2187},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2187/}
}
TY  - JOUR
AU  - Heller, Jeremiah
AU  - Ormsby, Kyle
TI  - Primes and fields in stable motivic homotopy theory
JO  - Geometry & topology
PY  - 2018
SP  - 2187
EP  - 2218
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2187/
DO  - 10.2140/gt.2018.22.2187
ID  - GT_2018_22_4_a5
ER  - 
%0 Journal Article
%A Heller, Jeremiah
%A Ormsby, Kyle
%T Primes and fields in stable motivic homotopy theory
%J Geometry & topology
%D 2018
%P 2187-2218
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2187/
%R 10.2140/gt.2018.22.2187
%F GT_2018_22_4_a5
Heller, Jeremiah; Ormsby, Kyle. Primes and fields in stable motivic homotopy theory. Geometry & topology, Tome 22 (2018) no. 4, pp. 2187-2218. doi : 10.2140/gt.2018.22.2187. http://geodesic.mathdoc.fr/articles/10.2140/gt.2018.22.2187/

[1] M Andrews, A non-nilpotent self map of S0∕η over C, preprint (2014)

[2] J Ayoub, Motives and algebraic cycles: a selection of conjectures and open questions, from: "Hodge theory and –analysis" (editor L Ji), International Press (2017) 87

[3] T Bachmann, On the conservativity of the functor assigning to a motivic spectrum its motive, preprint (2015)

[4] T Bachmann, Motivic and real étale stable homotopy theory, preprint (2016)

[5] P Balmer, The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. 588 (2005) 149 | DOI

[6] P Balmer, Supports and filtrations in algebraic geometry and modular representation theory, Amer. J. Math. 129 (2007) 1227 | DOI

[7] P Balmer, Spectra, spectra, spectra — Tensor triangular spectra versus Zariski spectra of endomorphism rings, Algebr. Geom. Topol. 10 (2010) 1521 | DOI

[8] P Balmer, Tensor triangular geometry, from: "Proceedings of the International Congress of Mathematicians, II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 85

[9] P Balmer, On the surjectivity of the map of spectra associated to a tensor-triangulated functor, preprint (2017)

[10] P Balmer, B Sanders, The spectrum of the equivariant stable homotopy category of a finite group, Invent. Math. 208 (2017) 283 | DOI

[11] D C Cisinski, F Déglise, Triangulated categories of mixed motives, preprint (2009)

[12] D Dugger, D C Isaksen, Motivic cell structures, Algebr. Geom. Topol. 5 (2005) 615 | DOI

[13] H Fausk, P Hu, J P May, Isomorphisms between left and right adjoints, Theory Appl. Categ. 11 (2003) 107

[14] J J Gutiérrez, O Röndigs, M Spitzweck, P A Østvær, Motivic slices and coloured operads, J. Topol. 5 (2012) 727 | DOI

[15] J Heller, K Ormsby, Galois equivariance and stable motivic homotopy theory, Trans. Amer. Math. Soc. 368 (2016) 8047 | DOI

[16] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1 | DOI

[17] J Hornbostel, A1–representability of hermitian K–theory and Witt groups, Topology 44 (2005) 661 | DOI

[18] M Hovey, J H Palmieri, N P Strickland, Axiomatic stable homotopy theory, 610, Amer. Math. Soc. (1997) | DOI

[19] P Hu, On the Picard group of the stable A1–homotopy category, Topology 44 (2005) 609 | DOI

[20] J F Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445

[21] R Joachimi, Thick ideals in equivariant and motivic stable homotopy categories, preprint (2015)

[22] S Kelly, Some observations about motivic tensor triangulated geometry over a finite field, preprint (2016)

[23] M Levine, Y Yang, G Zhao, Algebraic elliptic cohomology theory and flops, I, preprint (2013)

[24] F Lorenz, J Leicht, Die Primideale des Wittschen Ringes, Invent. Math. 10 (1970) 82 | DOI

[25] J Milnor, Algebraic K–theory and quadratic forms, Invent. Math. 9 (1969/1970) 318 | DOI

[26] F Morel, An introduction to A1–homotopy theory, from: "Contemporary developments in algebraic –theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes 15, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357

[27] F Morel, On the motivic π0 of the sphere spectrum, from: "Axiomatic, enriched and motivic homotopy theory" (editor J P C Greenlees), NATO Sci. Ser. II Math. Phys. Chem. 131, Kluwer (2004) 219 | DOI

[28] F Morel, A1–algebraic topology over a field, 2052, Springer (2012) | DOI

[29] T J Peter, Prime ideals of mixed Artin–Tate motives, J. K-Theory 11 (2013) 331 | DOI

[30] O Röndigs, P A Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008) 689 | DOI

[31] O Röndigs, P A Østvær, Rigidity in motivic homotopy theory, Math. Ann. 341 (2008) 651 | DOI

[32] R Thornton, The homogeneous spectrum of Milnor–Witt K–theory, J. Algebra 459 (2016) 376 | DOI

[33] V Voevodsky, A1–homotopy theory, Doc. Math. Extra Vol. ICM I (1998) 579

[34] V Voevodsky, Motivic cohomology with Z∕2–coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 59 | DOI

Cité par Sources :